VIVEKANANDA GLOBAL
UNIVERSITY, JAIPUR

L JAIPUR
(Established by Act 11/2012 of Rajasthan Govt. Covered u/s 2(f) of UGC Act, 1956)

M.Sc. Mathematics
Object Oriented
Programming with C++
SEMESTER 1

Author: Dr. Ankit Dhamija

Approval Director CIQA: 27th July 2023
Approval of Academic Council: 28th July 2023

vy
- VWivekananda i.;.r‘.-}al l-JniI'l'IETF‘i'
r Wiverkanandlc I

~4

Unit - 1 PROGRAMMING PARADIGM

Table of Content

Learning Objectives
Intreduction
Programming Paradigm
11 Need for OOP
11 Object Oriented Programming
111 Abstraction
{4 Principles of Object Oriented Programing
141 Encapsulation
14l Inheritance
141 Polymorphism
1.4.1 Abstraction
1§ Differences between OOP and Procedure oriented programming
14 Summary
1] Keywords
1} Review Questions

11 References

Learning Objectives

After studying this unit, the student will be able to:

L

I-'

{

Understand the different paradigms for problem solving: Gain a
comprehensive understanding of procedural, functional, and logic
programming paradigms, and their respective strengths and use cases.
Recognize the need for Object-Oriented Programming (OOP): Explore
the reasons why OOP has become a widely adopted approach fn
software development, including its modular structure, code reusability,
and suitability for real-world problem-solving.

Differentiate between Object-Oriented Programming and Procedure
Oriented Programming: Understand the key differences between OOP
and POP, including their approaches to code organization, data
management, and code reusability.

Grasp the concept of abstraction: Learn how abstraction allows you to
focus on essential features while hiding unnecessary details, enabling
the creation of higher-level models and enhancing code maintainability
and understandability.

Gain an overview of Object-Oriented Programming principles:
Familiarize yourself with the fundamental principles of 0OP, including
encapsulation, inheritance, and polymorphism, and understand their
significance in software design.

Explore the principle of encapsulation: Deepen your understanding of
encapsulation as a means to bundle data and behavior within objects,
promote data integrity, control access to data, and enhance code
modularity and reusability.

Understand the concept of inheritance: Discover how inheritance
enables code reuse, promotes modularity, and facilitates the creation of
class hierarchies, allowing objects to inherit properties and behaviors
from parent classes.

Learn about polymorphism: Explore the concept of polymorphism and
its ability to treat objects of different classes as interchangeable entities,
providing ﬁc.:lmibiliw and adaptability in software design.

| .

1.

4a (Globidh

Introduction

In the ever-evolving field of computer science and software development,
problem-solving lies at the core of every successful program. Over the years,
different paradigms have emerged to tackle complex problems efficiently and
provide scalable solutions. One such paradigm that has gained significant
popularity and revolutionized the way we approach software development is
Object-Oriented Programming (OOP). Object-Oriented Programming (OOP) is a
programming paradigm that organizes code around objects, which are instances
of classes. In OOP, objects encapsulate data and behavior, allowing for the
modeling of real-world entities or abstract concepts. At its core, O0OP emphasizes
the concept of objects interacting with each other to solve problems. Each object
has its own state, defined by its attributes or properties, and behavior, defined by
its methods or functions. Objects can communicate with each other through
messages or method calls, enabling collaboration and modularity in software

development.

To begin with, it is essential to understand the various paradigms for problem-
solving. Each paradigm represents a different approach to structuring and
organizing code to address specific challenges efficiently. From the structured
approach of POP to the object-centric nature of QOOP, these paradigms offer
unique perspectives and tools to simplify software development. Mext, we will
explore why OOP has become a prominent paradigm in modern software
development. OOP offers several advantages over POP, primarily driven by its
ability to model real-world entities as objects. By encapsulating data and behavior
within these objects, OOP promotes code reusability, modularity, and
maintainability. This chapter will elucidate these advantages and highlight the
need for OOP in contemporary software engineering. Abstraction, one of the key
concepts in OOP, allows developers to focus on essential features while hiding
unnecessary details. We will discuss how abstraction helps in managing
complexity and enables the creation of robust and scalable software solutions.
Furthermore, this ebook will provide an overview of the fundamental principles of
O0P. We will explore encapsulation, a mechanism that enables bundling of data
and methods together within an object, resumngtm data protection am::l improved

.

\ e

a Y| e AL
Fof \l BES ':
\ /

code organization. Additionally, we will dive into the concept of inheritance, which
facilitates code reuse and hierarchical relationships between objects. Lastly, we
will explore polymorphism, a powerful feature that allows objects of different
types to be treated uniformly, enhancing flexibility and extensibility in software
design.

1.1 Programming Paradigm

A programming paradigm is a fundamental approach or style of programming that
provides a framework for designing and structuring computer programs. It
encompasses a set of principles, concepts, and techniques that guide how
problems are solved and how programs are written.

Different programming paradigms have their own distinct rules, methodologies,
and patterns for organizing code and data. Following are some of the commonly
recognized programming paradigms:

i) Imperative Programming: This paradigm focuses on describing the steps
or instructions necessary to solve a problem. Programs in this paradigm
consist of a series of statements that modify the program state. It is based
on the notion of changing program state through a series of statements that
specify how to manipulate variables and data structures. Imperative
programming treats a program as a set of commands or instructions that
are executed in order, with control flow structures like loops and
conditionals guiding the execution path.

Key features and concepts of imperative programming include:

o State and Variables: Imperative programming involves maintaining
and modifying the program state by working with variables. Variables
can hold values that can be changed throughout the program's
execution.

o Assignment Statements: Imperative programs use assignment
statements to update the values of variables. These statements
assign new values to variables or modify their existing values.

b)

c)

. Control Flow: Imperative programming employs control flow
structures to determine the order in which statements are executed.
This includes loops (such as for, while) for repetition and conditionals
{(such as if-else) for decision-making.

Procedures and Subroutines: Imperative programming encourages

(B]

organizing code into reusable procedures or subroutines. These are
blocks of code that can be called and executed at different points in
the program, promoting code modularity and reusability.

o Mutable State: In imperative programming, program state can be
modified throughout execution. This means that variables can be
changed, leading to side effects that impact the program's behavior.

Languages like C, Pascal, Fortran, and early versions of BASIC are primarily

imperative programming languages. Even languages that support multiple

paradigms, such as Python and Java, have an imperative core. Imperative

programming is well-suited for tasks that involve explicit step-by-step
instructions and precise control over program state and execution flow,
While imperative programming is powerful and widely used, it can be prone
to issues like mutable state management, making it more challenging to
reason about complex programs. As a result, alternative paradigms like
functional programming and object-oriented programming have gained
popularity as they offer different approaches to problem-solving and code
organization
Object-Oriented Programming (OOP): Object-oriented programming
(OOP) is a programming paradigm that organizes software design around
objects, which are instances of classes that encapsulate data and behavior.
It provides a way to structure code by modeling real-world entities or
abstract concepts as objects, allowing for modularity, reusability, and easy
maintenance of code. DOP revolves around the concept of objects, which
are instances of classes that encapsulate data and behavior. This paradigm
emphasizes modularity, encapsulation, inheritance, and polymorphism.
Languages like Java, C++, and Python provide support for OOP.
Functional Programming: In functional programming, programs are built
using pure mathematicarl functions that avoid mutable state and side

a2 -\ENRW\
-.Illl : 3 R.E:J"" al
N

b

r

effects. Functions are treated as first-class citizens and can be passed as
arguments, returned as results, and stored in variables. Functional
programming languages include Haskell, Lisp, and Erlang.

Key concepts and features of functional programming include:

> Pure Functions: Pure functions are functions that produce the same
output for a given set of inputs and have no side effects. They do not
modify external state or variables and rely solely on their inputs to
produce the output. Pure functions are deterministic and easier to
reason about, test, and parallelize.

o Immutability: Functional programming promotes the use of
immutable data structures, where values cannot be modified after
creation. Instead of changing existing data, functional programs
create new data structures that represent updated or transformed
versions. Immutability ensures that data remains consistent and
avoids unintended side effects.

o Recursion: Recursion is a fundamental technique in functional
programming, where functions can call themselves. It allows for
elegant and concise solutions to repetitive or complex problems by
breaking them down into smaller subproblems.

o Declarative Style: Functional programming emphasizes a declarative
style of programming, focusing on "what” needs to be done rather
than “how"™ it should be done. Programs describe the desired results
or transformations, leaving the evaluation details to the programming
language or runtime.

o Functional programming languages, such as Haskell, Lisp, Erlang,
and parts of languages like JavaScript, Python, and Scala, provide
built-in support for functional programming concepts.

d) Procedural Programming: Procedural programming is similar to imperative
programming, but it focuses on procedures or subroutines. Programs are
organized into reusable procedures that perform specific tasks. It is based
on the idea of breaking down a problem into a sequence of steps or
procedures that are executed in order. Procedural programming
emphasizes clear, ln;tepbynstep instructions and the use of variables to

For W‘:' Unbeahaity Jaicur
| &2

Regsims

manipulate data. C and Pascal are examples of languages that primarily

support procedural programming.

Key features and concepts of procedural programming include:
Procedures: Procedures, also known as functions or subroutines, are
blocks of code that perform a specific task or calculation. They are
reusable and modular, allowing code to be organized into smaller,
self-contained units.

o Sequential Execution: Procedural programs follow a linear execution
flow, where statements are executed one after another in the order
they appear. Control flow structures, such as loops and conditionals,
allow for conditional branching and repetition.

5 Variables: Procedural programming utilizes variables to store and
manipulate data. Variables can hold different types of values and can
be assigned new values throughout the program’s execution.

o Modularity and Reusability: Procedural programming promotes
modularity by dividing code into procedures, making it easier to
understand, maintain, and reuse. Procedures can be called from
different parts of the program, reducing code duplication.

o Procedural Abstraction: Procedural programming allows
programmers to focus on the procedures and their functionality
rather than the underlying implementation details. The procedural
abstraction provides a high-level view of the program's functionality.

o Data and Procedure Separation: In procedural programming, there is
a separation between data and procedures. Procedures manipulate
data through parameters and local variables, keeping data and
procedures distinct.

¢} Logic Programming: Logic programming is based on formal logic and rules.

Programs are written in terms of logical statements and relationships. It
focuses on describing a problem as a set of logical statements and
relationships, rather than providing explicit instructions or procedures. In
logic programming, programs consist of a collection of logical facts and
rules, and the computation is performed through logical inference. The
most prominent logic programming language is Prolog.

Key concepts and features of logic programming include:

C

Ci

L]

Logic Rules: Logic programming uses logical rules, typically in the
form of Horn clauses, to express relationships and constraints, These
rules define logical implications and allow for reasoning and
inference.

Logical Facts: Logical facts represent information or assertions about
the problem domain. Facts consist of atomic statements that
describe properties or relationships between objects or entities.
Unification: Unification is a fundamental operation in logic
programming. It involves matching legical patterns or gueries with
available facts and rules to find solutions or evaluate gqueries.
Unification is used to bind variables and instantiate them with
appropriate values.

Backtracking: Logic programming supports backtracking, which
allows the program to explore multiple solutions to a problem. If a
particular rule or fact does not yleld a solution, the program can
backtrack and explore other possible paths or choices.

Rule-based Reasoning: Logic programming enables rule-based
reasoning, where the program can infer new knowledge or deduce
conclusions based on the provided logical rules and facts. This
makes logic programming useful in domains that involve logical
inference, such as expert systems and theorem proving.

fl Event-Driven Programming: This paradigm centers around responding to

events or user actions. Programs are structured to handle events

asynchronously, triggering appropriate actions when specific events occur,

Event-driven programming is commeonly used in graphical user interfaces
(GUIs) and web development. JavaScript is an example of a language that
facilitates event-driven programming.

11 Need for OOP

Object-oriented programming (OOP) provides a structured and modular

approach to software development. It offers several advantages and addresses

various needs in software engineering. Here are some key reasons for the need
of O0OP:

Modularity and Code Organization: QOP allows breaking down complex
systems into smaller, self-contained modules called objects. Each object
encapsulates its own data and behavior, providing a clear and modular
structure to the code. This modularity promotes code reusability,
maintainability, and ease of understanding.

Encapsulation and Data Hiding: OOP emphasizes encapsulation, which
involves bundling data and methods together within an object and hiding the
internal details from the outside world. This protects the integrity and
consistency of the data by preventing direct access and modification.
Encapsulation ensures that the object’s state is controlled and accessed only
through defined interfaces, improving data security and reducing the
likelihood of errors.

Code Reusability and Maintainability: OOP encourages the reuse of existing
code components. Through inheritance, objects can inherit properties and
behaviors from existing classes, promoting code reuse and minimizing
redundant code. This reduces development time, enhances code
maintainability, and simplifies updates and bug fixes.

Polymorphism and Flexibility: Polymaorphism, a core principle of 00P, allows
objects of different types to be treated uniformly through a common
interface. This enables writing generic code that can operate on objects of
various classes. Polymorphism increases flexibility, modifiability, and
extensibility, as new classes can be added without affecting existing code.
Abstraction and Simplification: QOOP encourages the use of abstraction to
model real-world entities or concepts into classes. Abstraction focuses on
essential features while hiding unnecessary details, simplifying the
complexity of the system. It provides a high-level view of the problem
domain, making the code easier to understand, design, and maintain.

g

o Regsh™

s Collaboration and Teamwork: OOP facilitates collaboration among
developers working on a project. Through the use of classes and objects,
different team members can work independently on different components
of the system, as long as they adhere to the defined interfaces. QOP's
modular and encapsulated nature allows for parallel development,
promoting efficient teamwork.

= Scalability and Extensibility: OOP provides a foundation for scalable and
extensible systems. New classes and objects can be added to accommaodate
changing requirements without major modifications to the existing codebase.
This allows software systems to grow and evolve over time, adapting to new
functionalities and user needs.

¢« Real-world Modeling: OOP aligns with real-world modeling by allowing
developers to represent entities, relationships, and behaviors in software
systems that mirror the real world. This promotes better understanding,
analysis, and design of the problem domain, leading to more intuitive and
maintainable code.

13 Object Oriented Programming

Object-oriented programming (OOP) is a programming paradigm that organizes
code around objects, which are instances of classes. It provides a way to structure
and design software applications by representing real-world objects and their
interactions.

In OOP, objects are the fundamental building blocks. They encapsulate data
{attributes or properties) and behavior (methods or functions) into a single unit.
Objects can communicate with each other by invoking methods or accessing
properties, enabling interaction and collaboration.

The key concepts in object-oriented programming are:

Classes: A class is a blueprint or template for creating objects. It defines the
properties and methods that objects of that class will have. For example, if we have
a class called "Car,” objects of this class will represent individual cars, and the class
will define the cumrlpun characteristics and behaviors that all cars share.

|

Objects: Objects are instances of classes. They are created from a class blueprint
and have their own state (values of attributes) and behavior (methods to perform
actions). Each object can have different values for its attributes while still following
the structure defined by the class.

Encapsulation: Encapsulation is the practice of hiding the internal details of an
object and exposing only the necessary information and functionality. It helps
maintain data integrity and provides a clean interface for interacting with objects.
Access to object attributes and methods can be controlled through access
modifiers (e.g., public, private, protected) to enforce proper usage.

Inheritance: Inheritance allows the creation of new classes based on existing
classes. It enables the reuse of code and the creation of class hierarchies, A
subclass (derived class) inherits the attributes and methods of its superclass {base
class or parent class) and can extend or modify their behavior. Inheritance
promotes code reusability and supports the "is-a” relationship.

Polymorphism: Polymorphism allows objects of different classes to be treated as
objects of a common superclass. It allows for the use of a single interface to
represent different types of objects, providing flexibility and extensibility in the
code. Polymorphism is achieved through method overriding (redefining a method
in a subclass) and method overloading (providing multiple methods with the same
name but different parameters).

Abstraction: Abstraction focuses on defining the essential characteristics and
behavior of an object, while hiding the implementation details. It allows developers
to create abstract classes or interfaces that provide a common interface for a
group of related objects. Abstraction helps manage complexity and promotes
modularity and flexibility in design.

1.31 Abstraction

Abstraction is a fundamental concept in object-oriented programming that
focuses on representing essential features and behaviors of objects while hiding
unnecessary details and complexities. It allows developers to create abstract
classes or interfaces that define a common interface or contract for a group of
related objects.

The purpose of abstraction is to simplify the complexity of a system by providing
a high-level view and hiding the implementation details, It enables programmers
to focus on the essential aspects of an object or a system without getting
entangled in the intricate internal workings.

In practice, abstraction involves identifying the essential properties and behaviors
that define an object’s functionality and ignoring the non-essential or
implementation-specific details. These essential aspects become the interface or
contract through which other objects can interact with the abstracted object, By
using abstraction, developers can create modular and extensible systems.
Abstract classes and interfaces provide a clear separation of concerns and allow
for code reusability. They promote loose coupling between objects and enable
flexibility in design and implementation.

Abstraction is closely related to other OOP principles like encapsulation and
inheritance. It helps in achieving encapsulation by hiding internal details and
providing a well-defined interface for interaction. It also supports inheritance by
allowing the creation of abstract classes that can be extended by concrete
subclasses.

14 Principles of Object Oriented Programing

Enfheriante

ODPS Concapts
Figure 1: QOPS Concepts

The principles of Object-Oriented Programming (OOP) guide the design and
implementation of software using the object-oriented paradigm. These principles

| it
| Tk

help developers create modular, maintainable, and flexible code. Here are the key
principles of OOP:

Encapsulation: Encapsulation is the principle of bundling data and related
behaviors (methods/functions) into objects. It involves hiding the internal details
of an object and providing controlled access to its data through public methods.
Encapsulation ensures data integrity, promotes code reusability, and reduces
code coupling.

Inheritance: Inheritance allows objects/classes to inherit properties and behaviors
from parent classes. It enables code reuse by defining a hierarchy of classes,
where subclasses inherit and extend the attributes and methods of their parent
classes. Inheritance promotes code extensibility, modularity, and the
implementation of the "is-a” relationship.

Polymorphism: Polymorphism allows objects of different classes to be treated as
objects of a common superclass. It allows for the use of a single interface to
represent multiple types of objects. Polymorphism enables flexibility in code
design, as different objects can respond differently to the same method call based
on their specific implementation.

Abstraction: Abstraction involves focusing on essential characteristics and
behaviors while hiding unnecessary details. It provides a higher-level view of
objects by defining abstract classes or interfaces that specify common behavior.
Abstraction allows developers to create models and design software based on
general concepts and ideas, without getting into implementation specifics.

Modularity: Modularity is the principle of breaking down complex systems into
smaller, self-contained modules or objects. Each module focuses on a specific
functionality or aspect of the system. Modularity promotes code organization, ease
of maintenance, and reusability by allowing independent development, testing,
and integration of modules.

Composition: Composition is the principle of creating complex objects by
combining simpler objects or components. It enables objects to be composed of
other objects, creating a "has-a" relationship. Composition promotes code reuse,
flexibility, and modularity by allowing objects to collaborate and delegate tasks to
other objects.

Single Responsibility Principle (SRP): SRP states that a class or module should
have only one reason to change. It emphasizes separating concerns and ensuring
that each class or module has a single responsibility. This principle enhances code
maintainability, readability, and reduces the impact of changes.

Open/Closed Principle {(OCP): The OCP states that software entities (classes,
modules, functions) should be open for extension but closed for modification. It
encourages designing code that can be easily extended with new functionality
without modifying existing code. This principle promotes code stability,
moadularity, and supports the concept of interfaces and abstract classes.

14 II'.l". l,_:.;'.'-l""-:"'l

141 Encapsulation

Encapsulation is a fundamental principle of object-oriented programming (QOP)

that promotes the bundling of data and related behaviors (methods/functions) into

objects. It involves hiding the internal details of an object and providing controlled
access to its data through public methods or interfaces. Encapsulation ensures
data integrity, promotes code reusability, and reduces code coupling.

Following are the key aspects of encapsulation:

o Data Hiding: Encapsulation enables the hiding of internal data within an object,
preventing direct access by external code. The object’s internal state is kept
private and can only be accessed or modified through designated methods or
properties. This protects the integrity of the data and prevents unauthorized
modifications.

o Access Modifiers: Access modifiers such as public, private, and protected are
used to define the level of access to the data and methods within an object.
Private members are only accessible within the object itself, while public
members can be accessed from outside the object. Protected members are
accessible within the object and its subclasses.

o Getters and Setters: Encapsulation involves providing controlled access to an
object’s data through getter and setter methods (also known as accessors and
mutators). Getters retrieve the value of a private data member, while setters
modify the value. By using these methods, the object can enforce validation,
perform calculations, or apply additional logic before accessing or modifying
the data.

o Information Hiding: Encapsulation allows developers to hide the
implementation details of an object's methods and data. The object exposes
only the essential information and behavior through a public interface. This
hides the complexity and implementation details, providing a simplified view
for users of the object.

o Code Reusability: Encapsulation promotes code reusability by encapsulating
related data and behavior within an object. Objects can be created once and
reused in different parts of the program without exposing their internal
workings. This reduces code duplication and increases development
efficiency.

o Code Maintenance: Encapsulation makes code maintenance easier by
localizing changes within an object. Modifying the internal implementation of
an object does not impact external code as long as the public interface
remains unchanged. This improves code modularity, reduces the risk of
introducing bugs, and enhances code maintenance and evolution.

o Security: Encapsulation enhances security by controlling access to an object’s
data. By keeping data private and providing controlled access through
methods, developers can ensure that only authorized operations are
performed on the data. This protects sensitive information and helps maintain
data integrity.

Encapsulation plays a crucial role in achieving modular, maintainable, and secure
code. It provides a way to protect internal data, control access, and define a clear
interface for interacting with objects. By adhering to the principles of
encapsulation, developers can design robust and flexible systems that are easier
to understand, modify, and extend.

Following are some real world examples to understand abstraction

Example: Bank Account

In a bank account system, the concept of encapsulation can be applied to ensure
the privacy and integrity of account data. The account object encapsulates
attributes such as the account number, balance, and owner's information. These
attributes are kept private and can only be accessed and modified through
designated methods such as deposit(), withdraw(), and getBalance(). The internal
implementation details, such as the algorithms for interest calculation or
transaction logging, are hidden from external access. Encapsulation in this case
protects the account's data and provides controlled access to it.

Example: Car

Consider a car object that encapsulates attributes like the make, model, year, and

mileage. The car object also has methods such as startEngine(), accelerate(), and

brake(). These methods internally manipulate the car's attributes, such as adjusting

the speed or updating the mileage. The details of how the engine starts or how the

acceleration and braking mechanisms work are hidden from external code. Only

the defined methods provide access to manipulate the car's behavior and

attributes.

Example: Employee

In an employee management system, encapsulation can be applied to the

employee object. The employee object encapsulates attributez such as the

employee ID, name, salary, and contact details. These attributes are kept private

and can only be accessed or moedified through specific methods like setSalary() or

getContactDetails(). The internal implementation details, such as how the salary is

calculated or how the contact information s stored, are hidden. Encapsulation

ensures that the employee’s data is protected and accessed only through the

defined methods.

In these examples, encapsulation provides several benefits:

« Data Integrity: Encapsulation protects data within objects, preventing
unauthorized access or modification.

* Security: By hiding implementation details, encapsulation enhances security
by limiting direct access to sensitive data or critical operations.

= Modularity: Encapsulation promotes modularity by encapsulating related
attributes and methods within objects, enabling independent development
and maintenance.

¢ Code Flexibility: Encapsulation allows the internal implementation of objects
to change without affecting other parts of the code that rely on the cbject's
public interface.

+ Code Reusability: Encapsulation facilitates code reuse as objects with well-
defined interfaces can be easily incorporated into other systems.

141 Inheritance

Inheritance is another fundamental concept in object-oriented programming
(O0P) that allows one class to inherit properties and behaviors from another class.
It is a mechanism that promotes code reuse and the creation of a hierarchical
relationship between classes.

Inheritance establishes an "is-a" relationship between classes, where one class (the
child or derived class) inherits characteristics from another class (the parent or
base class). The child class can access and use the properties and methods of the
parent class, and it can also add its own specific properties and methods or
override the ones inherited from the parent class.

The class that is being inherited from is called the base class or superclass, while
the class that inherits from the base class is called the derived class or subclass.

Inheritance allows the derived class to inherit the following from the base class:

s Attributes (data members): The derived class inherits the attributes defined in
the base class. These attributes represent the state or data associated with the
objects of the class.

» Methods (member functions): The derived class inherits the methods defined
in the base class. These methods define the behaviors or actions that objects
of the class can perform.

Inheritance provides several benefits, including:

e Code reuse: Inheritance allows the derived class to reuse the properties and
methods of the base class. This reduces code duplication and promotes
efficient development by building upon existing code.

= Modularity: Inheritance supports the creation of modular and organized code.
Base classes can be designed and implemented independently, focusing on
specific behaviors and attributes. Derived classes can then inherit and extend
this functionality as needed.

* Polymorphism: Inheritance enables polymorphism, which means that objects
of the derived class can be treated as objects of the base class. This allows for
writing code that can operate on objects of different classes through a
common interface, promoting flexibility and extensibility.

* Hierarchical organization: Inheritance facilitates the organization of classes into
a hierarchy. This hierarchy can reflect real-world relationships, making the
code more intuitive and easier to understand and maintain.

The derived class can then access the inherited members using appropriate
access modifiers and can override or extend the inherited methods as per its
reqguirements.

It's important to note that inheritance should be used judiciously and follow the
principle of “favor composition over inheritance” when appropriate. While
inheritance offers benefits, it can also lead to tightly coupled code and limitations
in terms of multiple inheritance. Therefore, careful design and consideration of the
relationships between classes are crucial to effectively utilize inheritance in QOOP.

[] [Eess)

e e
T s oy
G o) e
e

Figure 2: Types of Inheritance
In C++, there are several types of inheritance that allow classes to inherit properties
and behaviors from other classes. Here are some common types of inheritance

with corresponding C++ examples:

yriershy Jedoul

19

e Single Inheritance: Single inheritance involves a derived class inheriting
properties and behaviors from a single base class. It forms a direct hierarchy
where a derived class extends the base class.

o Multiple Inheritance: Multiple inheritance allows a derived class to inherit
properties and behaviors from multiple base classes. This means that a derived
class can have multiple direct base classes, combining their features into a
single derived class.

e Multilevel Inheritance: Multilevel inheritance occurs when a derived class
inherits from another derived class. It creates a chain or hierarchy of classes,
where each derived class further extends the features of its parent class.

« Hierarchical Inheritance: Hierarchical inheritance involves multiple derived
classes inheriting from a single base class. It creates a hierarchy of classes,
where each derived class has its specific features while sharing the commaon
features of the base class.

e Hybrid (Virtual) Inheritance: Hybrid inheritance combines multiple inheritance
with either single or multilevel inheritance. It allows a class to inherit from
multiple base classes while avoiding the issues of ambiguity that can arise due
to multiple inheritance

143 Polymorphism

Polymorphism is a fundamental concept in object-oriented programming (OOP)

that allows objects of different classes to be treated as objects of a common

superclass. It enables objects to exhibit different behaviors based on their specific
class types while being accessed through a common interface.

Polymorphism provides a way to write code that can operate on objects of

different classes without the need for explicit type checking or casting. This

promotes flexibility, modularity, and extensibility in software design.

There are two main types of polymorphism:

o Compile-time Polymorphism {Static Polymorphism): Compile-time
polymorphism refers to the ability of a programming language to select
different functions or methods at compile-time based on the arguments
provided or the types of the objects involved. This is achieved through function

Q@WL
EDT w lll' RRas
”ﬂ.-.

overloading and nperal:::lrlr overloading.

Function overloading allows multiple functions with the same name but
different parameter lists to coexist in the same scope. The appropriate function
is selected based on the arguments passed during the function call.
Operator overloading allows operators such as +, -, *, /, etc., to be overloaded
for different classes. This enables customized behavior for operators
depending on the operands’ types.
Example of function overloading fn Ce+:
vold addfint a, int b) {
cout << "Sum of two integers: " << {a + b) << endl;
]
vold add{double a, double b) [
cout << “Sum of two doubles: " << g+ b) << endl;
J
int main{) {
add(5, 10); /[Calls the first add|) function
add(3.5, 2.7); /! Calls the second add() function
return 0;
]

* Runtime Polymorphism (Dynamic Polymorphism): Runtime polymorphism
allows objects of different classes to be treated as objects of a common
superclass. This is achieved through fnheritance and virtual functions.

Inheritance establishes an “is-a” relationship between classes, where a derived

class inherits properties and behaviors from a base class. The derived class can be

used wherever the base class is expected.

Virtual functions are functions defined in the base class and overridden in the

derived class. They allow dynamic dispatch, which means that the appropriate

function to call is determined at runtime based on the actual type of the object.

Example of runtime polymorphism in C++:
/! Base class
class Shape {
public:
virtual vﬁid draw() {

For W |

cout << "Drawing a shape.” << endl;

/I Derived class
class Circle : public Shape {
public:
void draw() {
cout << "Drawing a circle,” << endl;

int mainf) {
Shape* shapePtr = new Circle();
shapePtr->draw{); !/ Calls the draw() function of Circle
delete shapePtr;
return 0;

]
Polymorphism allows for code reuse, flexibility, and the ability to design systems

that can easily accommodate new types of objects or behaviors. It promotes
encapsulation, abstraction, and modular design, making the code more

maintainable and extensible.
1.4.2 Abstraction

Abstraction is a key principle in object-oriented programming (O0OP) that focuses
on simplifying complex systems by hiding unnecessary details and exposing only
essential features to the user. It allows us to represent real-world entities and
concepts in a more understandable and manageable way.

In OOP, abstraction is achieved by creating abstract classes and interfaces that
define the common behavior and characteristics of a group of related objects.
These abstract entities provide a blueprint or template for concrete classes to
implement. Abstract classes cannot be instantiated; they serve as a foundation for
derived classes to inherit from and specialize. .\

22

Abstraction involves identifying the essential attributes and behaviors of an object

or a system and disregarding irrelevant or low-level details. It allows developers
to focus on the high-level concepts and interactions rather than getting bogged

down by implementation specifics.
Benefits of abstraction in OOP:

Simplification: Abstraction simplifies the complexity of a system by breaking it
down into manageable parts. It removes unnecessary details and provides a
higher-level view that is easier to understand and work with.

Encapsulation: Abstraction supports encapsulation by hiding the internmal
implementation details of an object or a system. It allows users to interact with
objects through well-defined interfaces without needing to know how the
underlying functionality is implemented.

Reusability: Abstract classes and interfaces promote code reusability. By
defining common behaviors and characteristics in abstract entities, they can
be inherited by multiple concrete classes, enabling the reuse of code and
reducing redundancy.

Modularity: Abstraction facilitates modular design by creating a clear
separation between the interface and implementation. It allows changes to be
made to the implementation without affecting the code that uses the abstract
entity, promoting maintainability and extensibility.

Flexibility: Abstraction provides flexibility in the design and evolution of
software systems. By defining abstract entities that represent common
concepts, it becomes easier to introduce new types of objects or behaviors by
simply implementing the required functionality.

15 Differences between OOP and Procedure oriented

programming
Object-Oriented Programming (OOP) and Procedural Programming are two

distinct paradigms with different approaches to designing and structuring
software. Following are the key differences between OOP and procedural
programming:

Data and Function Relationship:

|

| py, Aot
Fol Wi#l!ﬁ . 23

| i'j—_'e. Regisua

I-l

o Procedural Programming: In procedural programming, data and functions
are separate entities. Functions operate on external data, which can be
accessed and modified from anywhere in the program.

o Object-Oriented Programming: In O0P, data and functions are bundled
together within objects. Objects encapsulate both data (attributes) and
behavior (methods/functions) related to the object. The data and functions
are tightly bound together, promoting encapsulation and data hiding.

Code Organization:

o Procedural Programming: Procedural programs are organized around
procedures or functions that manipulate data. The focus is on a step-by-
step sequence of instructions, where functions are called and executed
sequentially.

o Object-Oriented Programming: OOF organizes code around objects, which
are instances of classes. The emphasis is on the interactions and
collaborations between objects. Objects encapsulate data and behavior,
promoting modularity and separation of concerns.

Reusability:

o Procedural Programming: Procedural programs achieve reusability through
functions, where blocks of code can be reused by calling the same function
from different parts of the program.

o Object-Oriented Programming: OOP provides inherent reusability through
inheritance and composition. Inheritance allows objects/classes to inherit
properties and behaviors from parent classes, while composition enables
objects to be composed of other objects. This promotes code reuse and
modularity.

Data Access and Control:

o Procedural Programming: In procedural programming, data can be
accessed and modified by any function or procedure in the program,
leading to a lack of control over data integrity.

o Object-Oriented Programming: OOP promotes data encapsulation and
controlled access through methods or functions. Data within objects is
protected, and access to it is regulated through getter and setter methods,
enhancing data integrity and security.

Code Flexibility and Extensibility:

o Procedural Programming: Procedural programs can become rigid and
difficult to modify or extend as they grow larger. Changes made to one
function can have ripple effects on other functions and variables.

o Object-Oriented Programming: OOP provides flexibility and extensibility
through features like inheritance and polymorphism. Inheritance allows for
the creation of new classes by extending existing ones, while
polymorphism allows objects of different classes to be treated
interchangeably. This promotes code reuse, modularity, and adaptability.

Real-World Modeling:

o Procedural Programming: Procedural programming may not provide a
direct and intuitive way to model real-world entities and relationships.

o Object-Oriented Programming: OOP offers a natural way to model real-
world cbjects and their interactions. Objects in OOP closely resemble real-
world entities, allowing developers to better represent and solve real-
world problems.

O0P focuses on objects, their interactions, and encapsulation of data and behavior,
promoting modularity, reusability, and code organization. Procedural
programming emphasizes procedures, step-by-step instructions, and separate
data and function structures. Both paradigms have their strengths and are suitable
for different types of applications and problem domains.

16 Summary
This ebook delves into different paradigms for problem solving, the need for

object-oriented programming (O0P), and an overview of key OOP principles
including abstraction, encapsulation, inheritance, and polymorphism.

The ebook begins by exploring different paradigms for problem solving,
highlighting their :harr:te-rimca and approaches. It emphasizes the shift from

procedural programming to the object-oriented paradigm as a way to address the
limitations of procedural programming and better model real-world problems.
The need for OOP is then discussed, emphasizing its benefits in software
development. O0P's modularity, code reusability, maintainability, flexibility, and
scalability are highlighted as crucial factors in tackling complex problems and
accommeodating changing requirements. The chapter emphasizes the significance
of DOP in promoting code organization, collaboration, and better modeling of real-
world entities and relationships.

Mext, the ebook focuses on the differences between OOP and procedural
programming. It highlights the key distinctions such as the emphasis on objects
and classes in O0P, encapsulation of data and behavior within objects, and the use
of inheritance and polymorphism to promote code reuse and flexibility. The
chapter underscores how these differences in approach enable more efficient and
maintainable code development. The concept of abstraction is then introduced,
emphasizing its role in simplifying complex systems. Abstraction allows
developers to focus on essential features while hiding unnecessary details. It
provides a high-level view of the problem domain, making the code more intuitive
and maintainable.

An overview of key OOP principles follows, starting with encapsulation.
Encapsulation emphasizes bundling data and methods within objects, protecting
the integrity and consistency of data by restricting direct access. The ebook
highlights how encapsulation improves code security, modifiability, and reduces
the likelihood of errors. The concept of inheritance is then introduced, illustrating
how it enables the derived class to inherit properties and behaviors from a base
class, Hierarchical relationships between classes and code reuse are discussed,
showcasing how inheritance promotes modularity and extensibility in software
systems. Finally, the ebook explores polymorphism, which allows objects of
different types to be treated as objects of a common superclass. Polymorphism
enables writing generic code that can operate on objects of various classes,
fostering flexibility, modifiability, and extensibility.

i

17 Keywords

« Paradigms: Different approaches or models for problem solving,

- Object-Oriented Programming (OOP): A programming paradigm that
emphasizes objects, classes, and their interactions to model real-world
entities and solve complex problems.

« Procedural Programming: A programming paradigm that focuses on
procedures or functions and the step-by-step execution of instructions.

- Differences: Distinctions or variations between different concepts or
approaches.

« Abstraction: Simplifying complex systems by focusing on essential features
and hiding unnecessary details.

« OO0P Principles: Fundamental concepts or guidelines that govern object-
orfented programming, including encapsulation, inheritance, and
polymorphism.

« Encapsulation: Bundling data and methods within an object and hiding the
internal details from the outside world.

+ Inheritance: The mechanism by which a class inherits properties and
behaviors from a base class, establishing a hierarchy of classes.

« Polymorphism: The ability of objects of different types to be treated as
objects of a commeon superclass, allowing for flexibility and code reuse.

- Code Organization: Structuring and arranging code in a systematic and
modular manner for better readability and maintainability.

- Modularity: Breaking down a system into smaller, self-contained modules
or components.

» Reusability: The ability to reuse existing code components in different parts
of a program or in different programs.

« Maintainability: Ease of making updates, bug fixes, and modifications to the
codebase without introducing errors or breaking functionality.

» Flexibility: The ability of a system to adapt to changing reguirements or
accommodate new functionalities.

- Scalability: The capability of a system to handle increasing amounts of work

or a growing user base,

For

Collaboration: Working together as a team on a project, often facilitated by
the modularity and encapsulation provided by OOP.

Real-world Modeling: Creating software systems that closely mirror real-
world entities, relationships, and behaviors.

Interfaces: Defined contracts or specifications that describe the methods
and behaviors that objects of a class must implement.

Modifiability: Ease of making modifications to the codebase to add new
features or modify existing functionality.

Extensibility: The ability to extend the functionality of a system without
rmodifying its existing codebase.

1§ Review Questions

aj

b)

c)
d)

g)

f)

g

hj

i)

)

How does object-oriented programming (OOP) address the limitations of
procedural programming?

Why is abstraction important in software development? How does it simplify
complex systems?

Explain the concept of encapsulation and its benefits in OOP.

What is the purpose of inheritance in object-oriented programming? How
does it promote code reuse and modularity?

Discuss the concept of polymorphism and its role in achieving flexibility and
extensibility in O0P.

How does OOP promote code reusability and maintainability? Provide
examples.

Compare and contrast O0OP with procedural programming in terms of their
approaches and key differences.

How does OOP align with real-world modeling? Explain the connection
between OOP and modeling entities and relationships.

Discuss the need for OOP in software development. What specific
challenges does it address?

How do the OOP principles (abstraction, encapsulation, inheritance, and
palymorphism) contribute to effective and efficient problem-solving?

28 aed®

19 References

1.

shiffman, D. (2016). Leaming Processing: A Beginner's Guide to
Programming Images, Animation, and Interaction (2nd ed.). Morgan
Kaufmann.

Eckel, B. (2006). Thinking in Java (4th ed.). Prentice Hall.

Deitel, P., & Deitel, H. (2017). Java: How to Program (Early Objects) (11th
ed.). Pearson.

Meyer, B. (1997). Object-Oriented Software Construction (2nd ed.).
Prentice Hall.

Singh, 5., & Singh, 5. (2019). Comparative Analysis of Object-Orfented
and Procedure-Oriented Programming Paradigms. International
Journal of Advanced Research in Computer Science, 10(3), 33-38.
Al-Mudimigh, A. S., & Ahmed, M. U. (2012). Encapsulation and
Inheritance in Object-Oriented Programming: A Comparative Analysis.
International Journal of Computer Science Issues, 9(5), 297-301.
sharma, 5., & Guleria, M. (2018). Polymorphism and Inheritance in
Object-Oriented Programming: A Comparative Study. International
Journal of Computer Applications, 181(23), 37-42.

Pandey, R., & Goyal, M. (2017}, Understanding the Concept of
Abstraction in Object-Oriented Programming: A Comparative Study.
International Journal of Computer Applications, 169(1), 20-24.

29

Unit-2 C++ BASICS

Table of Content

L N TN A R I i i o i e 5 4 o S T B SIS B i

Introduction ... O S ——
L P T - P T I . o L L it s B e i e e Pk s i 00 FH R =
i D T e T e o e P A e e e
2.3 Detiaration OF Vostalles: o i i i e o il st sars i s diemepiriine
LA ENPrESHONS:. wonsm s e e s e ettt s N .
B R PRI o L L e e A i e

2.6 Cparator PIRcBOBINER ... osiemssmsimessissismtsiss it sissiristsren st i s o s s ;
T S UIENIETNINEN | s oot oty o oy o 0 i B S i PR e P P S B
B TOBNIEITES ", oo cmngn i v om0 P RS S o ok s
2.9 REVIBW QUBSHIONG ... oo smcmmrrerrm e s e rmape st ab b b8 it b e s S
2.10 References ..o R b e e

Learning Objectives

After studying this unit, the student will be able to:

o

[a]

Understand the structure of a C++ program: Learn about the essential
components of a C++ program, including the main function, headers, and
namespaces. Gain the ability to organize code effectively and create
well-structured programs.

Familiarize yourself with data types: Explore different data types
available in C++, such as integers, floating-point numbers, characters, and
booleans. Learn how to declare variables of different data types and
effectively store and manipulate data.

Master variable declaration: Gain proficiency in declaring variables in C++
and assigning values to them. Understand the rules and best practices
for naming variables and managing memory efficiently.

Comprehend expressions and operators: Learn about varnous operators
in C++, including arithmetic, relational, logical, and assignment operators,
Understand how to combine variables and values using expressions to
perform calculations and make decisions.

Understand operator precedence: Gain knowledge of operator
precedence in C++ and learn how it determines the order of evaluation in
complex expressions. Avoid common pitfalls and write code that
produces the desired results by understanding how operators interact
with each other.

Introduction

In this Ebook, we will explore the foundational concepts of C++ programming in a
way that is easy to understand. We will cover topics such as the structure of a C++

program, data types, variable declaration, expressions, operators, and operator
precedence, breaking them down into simple and digestible explanations. C++ is
like a language of its own, with its own set of rules and vocabulary. We will guide

you through these concepts, using plain language and relatable examples to help
you grasp the core idea 1 Whether you are new to programming or have some

Myl L ki
| Urversy
e or VbrNS “
|

Regsl

experience, our aim is to make these topics accessible and approachable for

everyone.

We will start by examining the structure of a C++ program, explaining how it is
organized and how different parts fit together. Think of it as understanding the
structure of a story or a recipe. By the end of this section, you will have a clear
understanding of how to structure your own programs effectively.

Data types can sometimes feel overwhelming, but fear not! We will introduce each
data type step by step, describing its purpose and giving real-world examples to
make it relatable. You will gain an understanding of how to use different data types
to store and manipulate different kinds of information in your programs. Variable
declaration might sound complex, but we will break it down into simple terms. We
will show you how to create variables, assign values to them, and explain the rules
for naming them. Through practical examples, you will learn how to declare
variables correctly and use them to store and retrieve data. Expressions and
operators are the tools that allow us to perform calculations and make decisions
in C++. We will guide you through these concepts by using familiar scenarios and
everyday situations. You will learn how to combine values and variables using
operators, and how to write expressions that produce the desired results. To
navigate the world of operators, we will explain their purpose and show you how
to use them effectively. Don't worry if the different types of operators seem
confusing at first - we will simplify them and provide clear examples so that you
can understand their functions and apply them confidently in your code. Lastly, we
will demystify cperator precedence by explaining the order in which operators are
evaluated in expressions. We will illustrate this concept with easy-to-understand
examples and visuals, ensuring that you have a solid grasp of how to correctly
evaluate expressions in your programs.

11 Structure of C++ Program

The structure of a C++ program consists of various components that work together
to create a functional and organized :n-deba%, Understanding the structure is

T
; E '-'-.!-r'.'v:-.'ic*-- 3
gor e \ .
III" L .

essential for writing clear and efficient programs. Lets explore the key

components of a typical C++ program:

aj

B)

c)

d)

e}

f)

Preprocessor Directives: A C++ program often begins with preprocessor
directives, which provide instructions to the compiler before the actual
compilation process. These directives start with a '# symbol and are used
to include header files or define constants that will be used in the program.
Header Files: Following the preprocessor directives, we include necessary
header files using the "#include” directive. Header files contain definitions
and declarations for libraries and functions that we want to use in our
program. Commonly used header files include <iostream=> for input/output
operations and <cmath= for mathematical functions.
Namespace Declaration: The "namespace” keyword is used to declare the
namespace(s) that we want to use in our program. Namespaces help avoid
naming conflicts and provide a way to organize code. The most commonly
used namespace in C++ is the "std” namespace, which includes standard
library functions and objects.
Main Function: Every C++ program must have a “main” function, which
serves as the entry point of the program. It has a specific format: “int main()".
The main function is where the program execution starts and ends. It can
also accept command-line arguments, which allow interaction with the
program from the terminal.
Function Definitions: After the main function, you can define your own
functions, if necessary. Functions encapsulate a specific set of instructions
that can be called and reused throughout the program. They help
modularize the code and make it more readable and maintainable.
Variable Declarations: In C++, variables must be declared before they can
be used. Variable declarations specify the name and type of the variable.
This step allocates memory to store the variable and prepares it for use in
the program. Yariable declarations can be done within functions or at the
global level.
Statements and Expressions: Inside functions, you can write statements
and expressions to perform operations and computations. Statements are
individual insl.ru:ﬁ:ns that perform specific actions, while expressions
33 ,

For Vive

evaluate to a value. These can include assignments, calculations,
conditional statements, loops, and more.

h} Return Statement: The "return” statement is used to exit the function and
return a value (if the function has a return type other than void) back to the
caller. It also serves as the end of the main function, and a return value of 0
conventionally indicates successful program execution,

Let’s dive into the structure of a C++ program in more detail, using a simple
example to fllustrate each component. Here's a breakdown of the structure

with explanations:

Lets consider this program

Hinclude <iostream:
void greet():

int rnain{) {
int age = 25: [/ Variable declaration and initialization
float pi = 3.1415%;
std::string name = "lohn™;

greet();
stdicout << "My name is " << name << " << std:endl;

std;cout << "l am << age << " years old.” << std::end;
std:oout << "The value of pi is approximately " << pi << std:endl;

int sum = age + 5; [/ Expression
std:cout << "After adding 5, my age becomes ™ << sum << std-endi;

reburn ;

}

void greetf) {
std:cout <= "Hello, World!" << std::endl;
}

Preprocessor Directive:

Finclude <iostream’

This line is a preprocessor directive that tells the compiler to include the iostream
header file. The iostream library provides input/output stream functionality in C++.
It allows us to use objects like cout and endl for console output.

Fu." | /] F,E']'.:'.I a

'\ | 3

Function Declaration:
vaid greet{);

This line declares a function named greet() without providing the implementation.
Function declaration informs the compiler that there is a function with a specific
name, return type, and parameters. It allows functions to be called before their
actual definition.

Main Function:
int main() {
/f Function call
greet(};

return O]

}

The main() function is the entry point of every C++ program. It is where program
execution begins. The int before main{) indicates that the function returns an
integer value. In this example, we call the greet() function, and then the function
returns 0 to indicate successful program execution.

Variable Declaration and Initialization:
int age = 25;
float pi = 3.14159:
stdiistring name ="john";

In the main() function, we declare and initialize variables. The int type is used for
whole numbers, float for floating-point numbers, and std::string for strings. Here,
we declare and initialize variables age, pi, and name with their respective values.

Function Definition:
vold greet(] {

std:rcout << "Hello, wudd:(;' << shd:-endl;
|

Lalmipf

] I'III'-J‘?':‘I";T'I'lII 35
For Vivekaf!
|
I.'I Regsir=

This code defines the greet() function, which was declared earlier. The function
name, return type, and parameters must match the declaration. In this case, void
indicates that the function does not return a value. Within the function, we use
std::cout to output the string "Hello, World!" to the console.

Output Statements with Variables:

stdzcout << "My name |5 " << name << " << std:endl;
std:icout << | am " << age << " years old,” << std;zendl;
std::cout << "The value of pl is approximately ™ << pi << stdoendl;

These lines use the std::cout object to print output to the console. The << operator
is used to concatenate variables and strings within the output statements. We

display the values of name, age, and pi in the console.
int sum = age + 5;

This line demonstrates an expression where we add 5 to the age variable and
assign the result to the sum variable. The + operator performs the addition, and the

result is stored in sum.

11 Data Types
Data types define the type of data that a variable can hold. They specify the size

and format of the data, as well as the range of values and the operations that can
be performed on that data. Different data types are used to store different kinds of
information, such as numbers, characters, or boolean values.

In C++, data types are classified into several categories, including integer types,
floating-point types, character types, boolean type, and more. Each data type has
its own set of properties and limitations. By choosing the appropriate data type,
you can ensure efficient memory usage and perform operations accurately on the
data stored in variables. Using the correct data type is important because it
determines the amount of memory allocated to store the data and the range of
values that can be represented. It also affects the performance and accuracy of
operations performed on the data,

Following are various data types in C++: ['\';‘ i
| s
!uw =
36 | F K “ﬂﬁ"'d
% /

gor ¥

5.

10,

1.

12

Integer Types: int: Represents whole numbers, both positive and negative. It
typically uses 4 bytes of memory.

Example: int age = 25;

short: Represents smaller whole numbers. It typically uses 2 bytes of
memaory.

Example: short quantity = 10;
long: Represents larger whole numbers. [t typically uses 8 bytes of memory.
Example: long population = 1000000;

Floating-Point Types: float: Represents decimal numbers with single
precision. It typically uses 4 bytes of memory.

Example: float pi = 3.14159;

double: Represents decimal numbers with double precision. It typically uses
8 bytes of memory.

Example: double weight = 6B.5;

Character Types: char: Represents individual characters. It typically uses 1
byte of memaory.

Example: char grade = "A";

wchar_t: Represents wide characters. It typically uses 2 bytes of memory or
more.

Example: wehar_t unicodeChar = L0394

Boolean Type: bool: Represents boolean values, either true or false.
Example: bool isPassed = true;

Enumeration Types: enum: Allows you to define a set of named constants.
Escarmiphe:
enum Days { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
Days today = Monday;

Derived Types: array: Represents a fixed-size collection of elements of the
same type.

Example: int numbers[S]={1,2,3, 4,5}
pointer: Stores the memory address of another variable,

Example; int® p= &age;

reference; Provides an alias to an existing variable.

Example; intl r = age;
13. structure: Allows you to create your own composite data type.
Example;
struct Person |
std::string rame;
int age;
k
Person personl = { “John™, 25 };

14, class: Similar to a structure but with additional capabilities like encapsulation
and inheritance.

class Rectangle |
int width;
int height;
public:
int area(] { return width * height; }
b
Rectangle ract;
rect.width = 5;
rect.helght = 10;

int area = rect.areal);

11 Declaration of Variables

Declaration of variables in C++ involves specifying the type and name of a
variable, allowing the compiler to allocate memory for it. Here's a detailed

explanation of variable declaration in C++, along with rules and examples:

Syntax:
The general syntax for declaring a variable in C++ is:

data_type variable_name;

Rules for Variable Declaration:

= Variable names must start with a letter or underscore and can be followed
by letters, digits, or underscores.

= Variable names are case-sensitive. For example, count and Count are
considered different variables.

= C++ has reserved keywords that cannot be used as variable names.

« ‘Yariables should be declared before they are used in the program.

Examples:

« Integer Variable:
int age;
This declares a variable named age of type int, which can hold whole
numbers.

+ Floating-Point Variable:
float pi;
This declares a variable named pi of type float, which can hold decimal
numbers.

« Character Variable:
char grade;
This declares a variable named grade of type char, which can hold single
characters.

= Boolean Yariable:
bool isStudent;
This declares a variable named isStudent of type bool, which can hold true
or false values.

Wariable Initialization:

Variables can be initialized at the time of declaration, assigning an initial value to
them. Initialization is optional, but it's a good practice to give variables an initial
value to avoid using uninitialized variables.

Example:

int count = 0;

float temperature = 98.6;
char symbol = A’; |Ir i

39
For IOk s

bl

bool isValid = true;
Multiple Variable Declaration:

Multiple variables of the same type can be declared in a single statement,
separated by commas.

Example:
intx, vy,
Constant Variables:

Variables can be declared as constants using the const keyword. Constant

variables cannot be modified after initialization.
Example:

const int MAY_YALUE = 100;
14 Expressions

Expressions in C++ are combinations of literals, variables, operators, and function
calls that produce a value. They represent computations or operations to be
performed. Expressions can be as simple as a single variable or value, or they can
be complex, involving multiple operands and operators. Here's a detailed
explanation of expressions in Ce+;

Components of Expressions:

= Literals: Fixed values such as numbers or characters. For example, 5, ‘A, or
“Hello™.

= Variables: Named storage locations that hold values. For example, x, age, or
result.

= Operators: Symbols that perform operations on operands. Examples include
arithmetic operators (+, -, *, /), comparison operators (<, », ==}, logical
operators (&&, | |), and assignment operators (=, 4=, -=).

Function calls: Invocations of functions that return values. For example, sgri{16),

strien("Hello"). |'"1_
Examples of Expressions: I'|| "'.II il
|I .Mﬂr:'-!'.“i ;
B
R /> e
ca ™\

int x =5;

inty=3

intz=x+y; // Addition expression

bool isPositive = (z = 0); // Comparison expression

float average = (x +y) / 2.0; // Arithmetic expression

int result = factorial{4); // Function call expression
In the above examples:

The expression x + y adds the values of x and y together and assigns the
result to z.

The expression z > 0 compares z with 0 and assigns the result to isPositive.

The expression (x +y) / 2.0 calculates the average of x and y and assigns
the result to average.

The expression factorial{4) calls a function named factorial with the
argument 4 and assigns the returned value to result.

Evaluation of Expressions:

o Expressions are evaluated by the compiler at runtime. The evaluation
involves applying the operator’'s rules and precedence to the operands.
Parentheses can be used to control the order of evaluation.

Side Effects of Expressions:

o Expressions can have side effects, such as modifying variables, changing
the program's state, or invoking functions that have side effects. For
example, an assignment expresston (x = y) modifies the value of x, and a
function call expression can perform actions beyond just returning a value.

Type Conversion in Expressions: C++ performs automatic type conversions or
promotions to ensure that expressions with mixed data types can be evaluated
correctly. This includes converting values of one type to another ff necessary.

1 Operators

Operators in C++ are symbols or keywords that perform various operations on
operands, such as 1.f.|1|'iE|Iff_=s.J literals, or expressions. They allow you to manipulate

- - by
R

and process data in different ways, C++ provides a wide range of operators,

including arithmetic, assignment, comparison, logical, bitwise, and more.

1. Arithmetic Operators:

Addition +: Adds two operands together.

Subtraction -: Subtracts the second operand from the first.
Multiplication *: Multiplies two operands.,

Divisian /: Divides the first operand by the second.
Modulus %: Returns the remainder of the division.
Increment ++: Increases the value of the operand by 1.
Decrement --: Decreases the value of the operand by 1.

Example:

intx=5;

inty=3;

int sum = x +y; /! Addition

int difference = x - y; // Subtraction
int product = x *y; // Multiplication
int quotient =x / y; // Division

int remainder = x % yv; // Modulus
N4 /f Increment

¥ ! Decrement

2. Assignment Operators:

Assignment =: Assigns the value on the right to the variable on the left.
Compound assignment operators (+=, -=, *=, /=, %=): Combine an arithmetic
operation with assignment.

Example:

int x = 35;
x+=3; //Equivalenttox=x+3

3. Comparison Operators:

Equal to ==: Checks if two operands are egual.

Mot equal to !=: Checks if two operands are not equal.

Greater than >: Checks if the first operand is greater than the second.
Less than <: Checks if the first operand is less than the second.

Greater than or equal to »=: Chechs if the first operand is greater than or
equal to the second.

Less than or equal to <=: Checks if the first operand is less than or equal to
the second.

Example:

intx=5

inty=3;

bool isEqual = (x ==y); // Equality comparison
bool isGreater = (x = y); // Greater than comparison

4, Logical Operators:

Logical AND &&: Returns true if both operands are true.
Logical OR | |: Returns true if at least one of the operands is true,
Logical NOT !: Reverses the logical state of the operand.

Example:

bool isSunny = true;

bool isWarm = false;

bool isGoodWeather = isSunny && isWarm; // Logical AND
bool isEitherSunnyOrWarm = isSunny || isWarm; // Logical OR
bool isMotsunny = lisSunny; // Logical NOT

5. Bitwise Operators:

Bitwise AND &: Performs bitwise AND operation on the operands.

Bitwise OR |: Performs bitwise OR operation on the operands.

Bitwise XOR *: Performs bitwise XOR operation on the operands.

Bitwise NOT -: Performs bitwise NOT operation on the operand.

Left shift <<: Shifts the bits of the first operand to the left by the number of
positions specified by the second operand.

Right shift >>: Shifts the bits of the first operand to the right by the number
of positions specified by the second operand.

Example:

intx=15; J//Binary: 0101

inty=13; //Binary: 0011

int bitwiseAnd = x & y; // Bitwise AND: 0001 (1 in decimal)
int bitwiseOr = x Ell'fi;; ! Bitwize OR: 0111 (7 in decimal)

Lo
F“““Whl e]
|L.I il -

b

Jaipur

L'

int bitwiseXor = x " y; // Bitwise XOR: 0110 (6 in decimal)
int bitwiseMot = -x; // Bitwise NOT: 1010 (-6 in decimal)
int leftShift = x << 2; // Left shift: 10100 (20 in decimal)
int rightShift = x >> 1; // Right shift: 0010 (2 in decimal)

L6 Operator Precedence

Operator precedence in C++ determines the order in which operators are evaluated
when an expression contains multiple operators. It defines the grouping and
sequencing of operators based on their priority levels. Operator precedence
ensures that expressions are evaluated correctly, following the rules specified by

the language.

Here's an explanation of operator precedence in Ces:

. Operator Precedence Levels: C++ assigns each operator a precedence level,
which determines its priority in an expression. Operators with higher
precedence are evaluated first, followed by operators with lower precedence.
In case of operators having the same precedence level, the associativity of the

operators comes into play.

1. Operator Precedence Rules:

Higher precedence operators are evaluated before lower precedence
operators.

Operators with the same precedence level are evaluated from left to right,
unless the operator is right-associative.

Parentheses () can be used to override the default precedence and enforce
a specific evaluation order.

Common Operator Precedence Examples:

Arithmetic Operators:
o Multiplication ®, Division /, and Modulus % have higher precedence
than Addition + and Subtraction -.
o Forexample: 2 + 3* 4is evaluated as 2 + (3 ® 4), resulting in 14.
Comparison Operators:
o Comparison operators such as <, », <=, and >= have higher precedence
than Equality operators == and |=, (\ﬁ
3\
4

pity. SR

44 rof

For example: 2 + 3 < 4is evaluated as (2 + 3) < 4, resulting in true,

= Logical Operators:

o Logical MOT ! has higher precedence than Logical AND BE and
Logical OR ||.

o For example: Itrue && false is evaluated as (!true) && false, resulting
in false,

= Assignment Operators:

o Assignment operators such as =, +=, -= have lower precedence than
mast other operators.

o Forexample: x =2 + 3 is evaluated as x = (2 + 3), assigning 5 to x.

« Operator Precedence and Parentheses:

o Parentheses () can be used to cverride the default precedence and
enforce a specific evaluation order. Expressions within parentheses
are evaluated first.

o Forexample: (2 + 3) * 4 is evaluated as 5 * 4, resulting in 20.

Far W}ﬁhﬂa e mpapredy, Lip
|
I

Hﬂijlj‘-%

Lisswl Cypisratars DHrseripihes Assaokativity
i It Scope Aesolaton
i} Funstas Cal
o Arvsy Subampt
15 : - Fﬂﬂ:mm Lot bo Feight
satic_canl, Type Corversion
Synamic_eatl e
- = Profi Incremaent F Desonemand
4 . Uinary phus I minus
I Liogicad negaton | bitwise complement
(ireed G- atyle hypscanting h
14 . Rligh B Lah
& Actew s of
i [Fird sz in brytes.
new, deiste | Dynamic Memony Aloosson | Dealiocaton
g [Trray—
13 i Ditaian L b Fright
% Moy
12 - [F P R ——— L& e Right
== B s Shid
" eE M':.ﬂtsm Lol Pt
< = Relssonal Levs Than J Less than Egual Te
" > »e | Retationsl Orester Oraaterthan Bquat T | 0 o
-] = Hﬂ-ﬂll'lu I.-hm
8 i Bitwise AMD Lef o Right
7 . Bitwise XOR Laft 1o Fight
) 1 Bitwise OR Lok ko Flight
5 EE Lages! AND Lt to Right
4 1 Logial OR Left Io Right
3 T [——— Fight o Lah
2 e = Assgmment Dperaton Fiight 1o Leh
A dm =
LoE BwE
1 Comma Operaior I.lll'll:liiﬁn
L1l Summary

The ebook begins by introducing the structure of a C++ program, explaining the
necessary components and their respective roles. Readers gain a clear
understanding of how to organize their code effectively and create well-

structured programs.

Moving on, the book delves into data types, discussing the various options
available in C++. Readers learn about fundamental types, including integers,
floating-point numbers, characters, and booleans. Additionally, more advanced
data types, such as arrays and structures, are explained, allowing readers to
handle complex data structures efficiently. ;

46

The ebook then explores the crucial concept of variable declaration in C++_ It
covers the syntax for declaring variables and discusses the rules and best
practices for naming variables. With this knowledge, readers can confidently
create variables of different types and utilize them effectively within their
programs. Next, the ebook focuses on expressions in C++. It explains how
expressions are formed using variables, literals, and operators. Additionally,
readers gain an understanding of the various operators available in C++ and their
respective functionalities. The guide goes into detail about arithmetic, relational,
logical, and assignment operators, providing examples and practical exercises to
reinforce learning.Lastly, the ebook covers operator precedence, a fundamental
aspect of C++ programming. It explains the rules that govern the order of evaluation
when multiple operators are present in an expression. By understanding operator
precedence, readers can write code that performs calculations accurately and
avoids ambiguity.

18 Keywords

19

C++ Basics: An ebook providing a comprehensive guide to fundamental
concepts in C++ programming.

Structure of a C++ program: Explains the essential components and
organization of a C++ program.

Data types: Covers different types of data in C++ such as integers, floating-
point numbers, characters, and booleans.

Declaration of variables: Discusses the syntax and best practices for
declaring variables in C++,

Expressions: Explores how expressions are formed using variables, literals,
and operators in Cs+,

Operators: Covers the various operators available in C++ such as arithmetic,
relational, logical, and assignment operators.

Operator precedence: Explains the rules governing the order of evaluation
in expressions with multiple operators.

Review Questions

What is the structure of a basic C++ program? Describe the different
components that make up a C++ program.

How are variables declared in C++7 Explain the syntax and rules for declaring
variables of different data types.

What are the fundamental data types in C++! Give examples of each data
type and describe their characteristics.

How do you assign values to variables in C++7 Provide examples of
assignment statements for different data types.

Explain the concept of expressions in C++. What are the different types of
expressions, and how are they evaluated?

What are operators in C++? Discuss the various types of operators and
provide examples of their usage.

Describe the concept of operator precedence in C++. How does it determine
the order in which operators are evaluated in an expression?

10

How does C++ handle arithmetic operations on variables of different data
types? Explain the rules and potential implications of mixed-type arithmetic.
Discuss the concept of typecasting in C++. When and how would you
perform explicit type conversions?

References

1. Shiffman, D. (2016). Learning Processing: A Beginners Guide to
Programming Images, Animation, and Interaction (2nd ed.). Morgan
Kaufmann.

1, Eckel, B. {2006). Thinking in Java (4th ed.). Prentice Hall.

1. Deitel, P., & Deftel, H. (2017). Java: How to Program (Early Objects) (11th
ed.). Pearson.

4. Meyer, B. (1997). Object-Oriented Software Construction (2nd ed.).
Prentice Hall.

Unit - 3 Evaluation of expressions and Flow control
statements

Table of Content

Learning Objectives
Introduction
3.1 Evaluation of Expressions
3.2 Type conversions
3.3 Pointers
3.4 Pointers and Arrays
3.6 Strings
3.7 Structures
3.8 Introduction to Flow Control
39 If Statements
3.9.1 Hested If statements
3.10 Switch
3.11 While loop
3.12 Do while
313 Break
3.14 Continue
3.15 Goto
3.16 If else
317 References
3.18 Summary
3.1%9 Keywords
3.20 Review Questions
n References

Learning Objectives

After studying this unit, the student will be able to:

8]

Evaluate expressions in C++, understanding the order of operations and
the use of various operators.

Perform type conversions in C++, including implicit and explicit
conversions, and comprehend their impact on program execution.
Manipulate pointers in C++, including understanding their relationship
with variables, accessing memory addresses, and modifying data
directly.

Work with arrays in C++, covering their declaration, initialization, and

manipulation, including multidimensional arrays.

Understand the intersection of pointers and arrays, utilizing pointers to
efficiently access and modify array elements.

Understand the purpose and functionality of flow control statements
such as if, switch, while, for, do, break, continue, and goto.

Learn how to use if statements to make decisions and control the flow
of your code based on specific conditions.

Master the switch statement and its ability to simplify complex
branching logic by evaluating multiple cases.

Gain proficiency in creating loops using the while statement, enabling
repetitive execution until a specified condition is met.

Discover the power of the for statement for iterating over a range of
values, controlling loop progression, and streamlining code.

Learn how to use the do statement to ensure the execution of a block
of code at least once, even if the condition is initially false.

Introduction

C++ is a powerful programming language widely used in various domains,

including software development, game development, and embedded systems. To
become proficient in C++, it is essential to grasp the core concepts that form the
building blocks of the language, This eBook focuses on key topics that are vital for
any C++ programmer’s skill set.

We begin by exploring the evaluation of expressions, an integral aspect of C+s

programming. Understanding how expressions are computed, the order of

|
51
For rignda Unmersity, Joonur
|~' £

Regisirar

operations, and the use of different operators will enhance your ability to write
concise and effective code. Next, we delve into type conversions, an important
aspect of any programming language. You will leamn about implicit and explicit
conversions, how they affect program execution, and technigues to handle
conversions appropriately. The concept of pointers is next on our journey. Pointers
allow you to work with memory addresses and manipulate data directly, offering
unparalleled flexibility and control. We will guide you through the fundamentals
of pointers, their relationship with variables, and their application in various
programming scenarios. Arrays are another fundamental data structure in C++. We
will explore their declaration, initialization, and manipulation technigues.
Additionally, we will cover multidimensional arrays and efficient array
manfpulation using pointers. To handle textual data, we dedicate a section to
strings. You will learn how to declare, initialize, and manipulate strings, as well as
perform common operations like concatenation and searching. Structures provide
a means to organize and store related data. We will guide you through the creation
and usage of structures, including nested structures and structure arrays. We will
also explore passing structures to functions, returning structures from functions,
and utilizing structure pointers. Lastly, we introduce references, a powerful feature
in C++ that provides an alternative to pointers for efficient variable manipulation.
You will gain an understanding of references, their declaration, initialization, and
usage, and discover how they offer advantages over pointers in certain scenaros.

3.1 Evaluation of expressions

Evaluation of expressions is a fundamental aspect of C++ programming.
Expressions are combinations of values, variables, operators, and function calls
that result in a single value. Understanding how expressions are evaluated and the
order in which operations are performed is crucial for writing correct and efficient
code.

Arithmetic Expressions:

Arithmetic expressions involve mathematical operations such as addition,
subtraction, multiplication, and division. The evaluation follows the standard

mathematical rules, considering operator precedence and associativity.

inta=10;
int b=5;
intc=3;
intresult=fa+b)*c-a/lb;

In the above example, the expression result = (a+ b) * ¢ - a / b is evaluated as
follows:

e First, the addition (a « b) is performed, resulting in 15.

e HNext, the multiplication (15 ® c) is evaluated, yielding 45.

e Then, the division (a / b) is calculated, resulting in 2 (integer division).

= Finally, the subtraction (45 - 2) is performed, giving the final result of 43,
which is assigned to the variable result.

Relational Expressions:

Relational expressions compare values and return a Boolean result (true or false).
Common relational operators include <, >, <=, >=, ==, and !=,

fntx=5;
inty = 10;
bool isGreater = x > \;
bool isEqual = X ==y,

In the above example, the expression x = y evaluates to false since 5 is not greater
than 10. Similarly, the expression x == y evaluates to false because x and y are not

equal.
Logical Expressions:

Logical expressions combine Boolean values using logical operators such as &&
(logical AND), || (logical OR), and ! {logical NOT).

bool a = true;
bool b = false;
Bool result = a k& F-b;

53
For ba Universiny f=mur

Riagistrar

In the above example, the expression a && !b evaluates to true. It first applies the
logical NOT ocperator to b, resulting in true (since !false is true). Then, it performs
the logical AND operation between a and the negated b, resulting in true.

Assignment Expressions:

Assignment expressions are used to assign a value to a variable using the =
operator.

int x = 5;
int y= 10;
y=x+3

In the above example, the expression y = x + 3 assigns the value of x + 3 (which is 8)
to the variable y.

3.2 Type conversions
Type conversions, also known as type casting, in C++ allow you to convert values

from one data type to another. Type conversions are essential for ensuring
compatibility and performing operations between different data types. Lets
explore the different types of type conversions in Ce+:

1. Implicit Conversions:

Implicit conversions, also known as automatic conversions, occur
automatically by the compiler when it detects a compatible type
conversion. These conversions are safe and don't require any explicit
operator or function calls.

int num = 10;
double result = num; [/ Implicit conversion from int to double

In the above example, the num variable of type int is implicitly converted to
type double during the assignment. The compiler automatically performs
the conversion, widening the value from an integer to a floating-point

number, (\'1

!
1. Explicit Conversions: U
arersity, Jaipur
For kﬁm;@h%mﬁ“ﬁ '
4 \ / ;

Regstar

Explicit conversions, also known as type casting, are performed explicitly by

the programmer using casting operators. These conversions require explicit

syntax to indicate the desired conversion.

1.

Static Cast: The static cast operator static_cast is used for most
common type conversions. It performs conversions that are known to
be safe, such as converting between numeric types or derived-to-
base class conversions.
double num = 3,14;
int result = static_cast<int={num); /! Explicit conversion from double (o
int
In the above example, the static cast is used to explicitly convert the
num variable of type double to an int. This conversion truncates the
decimal part, resulting in the value 3 being assigned to the result
variable,
Dynamic Cast: The dynamic cast operator dynamic_cast is used for
conversions between pointers or references to polymorphic types,
such as derived-to-base class conversions. It performs runtime type
checking to ensure the conversion is valid.
class Base {

/! Base class definition

L

class Derived : public Base [
/! Derived class definition
k

Base® basePtr = new Derived|};

Derived* derivedPtr = dynamic_cast<Derived*=(basePtr); I/ Explicit
downcast

In the above example, the dynamic cast is used to explicitly downcast
the basePtr of type Base® to a Derived®. It ensures that the conversion
is valid and returns a pointer to the derived class object. If the
t possible, it returns a null pointer,

conversion is
Uni@Sy, faic

Registrar

3. Other Casts: C++ also provides additional cast operators for specific

scenarios, such as const_cast for removing constness,
reinterpret_cast for low-level reinterpretation of types, and typeid for
obtaining type information at runtime.
It's important to exercise caution when using explicit conversions, as
they may lead to unintended behavior or loss of data. Only perform
explicit conversions when you are certain about the safety and
compatibility of the conversion. Understanding and utilizing type
conversions in C++ allows you to manipulate data of different types
and perform operaticns effectively. Be mindful of implicit and explicit
conversions to ensure correct and reliable program behavior.

3.3 Pointers
How Pointer Works in C++
ar
int var = 10; = W 20 30
#3032 I

int® ptr = Bvar;
*ptr = 20;

int**ptr = &ptr;
**ptr=30;

C++ pointers are variables that store memory addresses. They allow you to directly
access and manipulate data stored in memory. Pointers are a powerful feature of
C++ and are commonly used for dynamic memory allocation, working with arrays,
and interacting with functions. Let's delve into the details of C++ pointers:

1. Declaring and Initializing Pointers:

To declare a pointer, you use the * symbaol in front of the variable name to
indicate that it will store a memory address. Here's an example;

int* ptr; // Declaration of an integer pointer

To initialize a pointer, you assign it the address of a variable or allocate
memaory using the new operator:

int num = 10

int® ptr = Bnum; /7 Assigning the address of ‘num’ to ptr

int* dynPtr = new int; // Dynamically allocating memory

1. Accessing and Modifying Pointed Values: You can access the value stored
at a memory address pointed to by a pointer using the dereference
operateor (*). This retrieves the value rather than the address itself:

int num = 10;

int® ptr = #
cout << "pir << endl; // Output: 10

“‘ptr=20; // Modifying the value through the pointer
cout << num << endl; // Qutput: 20

In the above example, *ptr retrieves the value stored at the memory address
pointed to by ptr. Modifying the value through the pointer (*ptr = 20) also
updates the original variable num.

1. Null Pointers: A null pointer does not peint to a valid memory address. It is
typically used to indicate the absence of a valid target. You can assign a
null value to a pointer using the nullptr keyword or the literal 0:
int* nullPtr = nullptr;
int* anotherNullPtr = 0;

Null pointers are often used for error checking or as initial values before

pointing to valid memory locations.

4, Pointer Arithmetic: Pointers can be incremented or decremented to
navigate through memory addresses. This is particularly useful when
warking with arrays or accessing consecutive memory locations:
intarr[]={1, 2, 3,4, 5}
int* ptr = arr;

cout << “ptr << endl; // Output: 1

ptr++; /! Move the m;ftffpr to the next element
|

cout << "ptr << endl; // Qutput: 2

5. Memory Deallocation: If you allocate memory dynamically using the new
operator, it is essential to deallocate that memory to prevent memory leaks,
Deallocate memory using the delete operator:
int* dynPtr = new int;

/1 Use the dynamically allocated memory
delete dynPtr; // Deallocate the memaory

For arrays allocated with new(], use delete[] for deallocation:
int* dyndrr = new int[5];
! Use the dynamically allocated array

delete[] dynArr; /! Deallocate the array

Forgetting to deallocate dynamically allocated memory can lead to
memory leaks, where memory remains allocated even after it is no longer
needed.

C++ pointers offer flexibility and control over memory management.
However, their misuse can lead to bugs, crashes, and security
vulnerabilities. Ensure proper initialization, dereference carefully, handle
null pointers, and deallocate dynamically allocated memory to maintain
safe and efficient code.
Points to remember

e A pointer is a variable that stores the memory address of another

variable.
[t allows indirect access to the memory location where a value is

stored.

e Pointers enable dynamic memory allocation and deallocation.
& They are denoted by an asterisk (*) before the variable name.

¢ Pointers can be used to improve program efficiency by avoiding
f\

unnecessary data copying

phversity, Jaspur

Registrar

3.4 Arrays

Array in C

#rray Elements
o

i ! 1 !
ey (2] re]e]
Q 1 i &

3 5 =— Array Indexes

Arrays in C++ are a collection of elements of the same data type, stored in
contiguous memory locations. They provide a convenient way to store and access
multiple values of the same type. Here are some key points about arrays in C++:

1. Declaring and Initializing Arrays: To declare an array, you specify the data
type of its elements, followed by the array name and the size of the array
in square brackets:

int numbers[5]; // Declaration of an integer array with size 5
You can also initialize an array at the time of declaration:
int numbers[= {1, 2, 3, 4, 5}; [/ Array initiclization with values

1 Accessing Array Elements: Array elements are accessed using their index,
starting from 0. You can use the square bracket notation to access or
maodify individual elements of the array:

int numbers{]={1,2, 3,4, 5;
int firstElement = numbers[Q]; // Accessing the first element
numbers[2] = 10; // Modifying the third element

In the above example, numbers[0] retrieves the first element of the array,
and numbers[2] = 10 modifies the third element.

1. Array 5ize and Bounds: The size of an array is fixed at the time of
declaration and cannot be changed during runtime. It's important to ensure
that array indices are within bounds to avoid accessing memory outside the
array boundaries, whith can result in undefined behavior or program
crashes,

Regisiny

£

Multidimensional Arrays: C++ supports multidimensional arrays, such as 1D
arrays, which are essentially arrays of arrays. They are useful for
representing matrices, grids, or other tabular data:

int matrixf3][3] = {
i3
{4, 3, 8},
(7, & 9
X
cout << matrix{1]{2] << endl; [/ Output: &

In the above example, matrix[1][2] accesses the element at the second row
and third column of the 20 array.

Celumng

Colken] Columm? Colemn

P d 10 J i1 l 12 % jdrvgyl
L T
" mll 21 40 4 | 43 - Arvayd | Marays
} |
| m Tl Id —& Avoyd
ey I 3 i
6 | &0 Bl (¥
| 90 | o1 | m
Foints to remember

= An array is a collection of elements of the same data type, stored in
contiguous memory locations.

= |t provides a convenient way to store and access multiple values of
the same type.

s Array elements are accessed using indices, starting from 0.

» Arrays have a fixed size, which is determined at the time of
declaration.

e They allow for efficient memory utilization and easy traversal of

elements.

1.5 Pointers and Arrays

In C++, the array name can be treated as a pointer to its first element. Therefore,
you can use a pointer to traverse an array or pass it as an argument to functions:

fnt numbers[]= {1, 2, 3, 4, 5};

int® ptr = numbers; !/ ‘numbers'is equivalent to ‘&numbers{0]
cout << “ptr << endl; // OQuiput: 1

cout << *fptr + 2) <<= endl; // Output:; 3

Here's a detailed explanation of the relationship between arrays and pointers in
e+

1. Array Name as a Pointer; In C++, the name of an array can be treated as a
painter to its first element. When you use the array name in an expression,
it is automatically converted to a pointer to the first element of the array.
For example:

int numbers[]= {1, 2, 3, 4, 5};
int* ptr = numbers;

In the above code, the array name numbers is automatically converted to
a pointer to its first element. Thus, assigning numbers to the pointer ptr is
valid.

1. Accessing Array Elements: To access individual elements of an array, you
can use the array subscript notation or pointer arithmetic. Both methods
are equivalent. For example:

int numbers{] = {1, 2, 3, 4, 5};
{{ Using array subscript notation

61

Fﬂﬂ.ﬁlﬁri

int firstElement = numbers(0]; // Accessing the first element

f{ Using pointer arithmetic

int® ptr = numbers;

int secondElement = *(ptr + 1); // Accessing the second element

using either numbers[index] or *(ptr + index). The index specifies the
position of the element within the array.

. Pointer Arithmetic and Array Traversal: Pointer arithmetic allows you to
traverse an array by incrementing or decrementing a pointer. When you
increment a pointer, it moves to the next memory location based on the size
of the data type it points to. Similarly, decrementing the pointer moves it to
the previous memaory location. For example:

int numbersf] = [1, 2, 3, 4, 3};
fnt* ptr = numbers;
for finti=0;1<5;i+){
cout << *ptr<<""; [/ Accessing array elements using pointer dereference

ptr++; [/ Moving to the next element

}

In the above code, the ptr pointer is initially pointing to the first element of
the numbers array. By incrementing ptr inside the loop, we can traverse
the array and print its elements.

. Pointers and Function Arguments: Pointers are commaonly used in function
parameters to pass arrays as arguments. When an array is passed to a
function, it decays into a pointer to its first element. The function can then
use pointer notation to access the elements of r{he array. For example:

void printArcay(int® arr, int size) [h} i
W e E"

62 cof . P W‘E’gﬁ

/

for fint { = 0; | < size; #++)

W oE

cout =< arrfi] << "%

int numbers[]=[1, 2, 3,4, 5
int size = sizeofinumbers) | sizeof (numbersf0]);
printArray{numbers, size);

In this example, the printArray function takes a pointer arr and the size of
the array as arguments. Inside the function, the array elements are

accessed using array subscript notation (arr[i]).
5. Dynamic Arrays and Pointers:

When you allocate memory for an array dynamically using the new operator,
the pointer to the dynamically allocated memory is returned. This pointer can
be used to access and manipulate the array elements. For example:

int size = 5;
int* dynamicArray = new int[size]; // Dynamically allocate memory
for (inti=0; i < size; i++)

dynamicArray[i] =i+ 1; /! Accessing and modifying dynamic array

3.6 Strings

A string is a sequence of characters that represents textual data in programming.
It is a fundamental data type used to store and manipulate text or character-based
information. In C++, strings ale represented by the std::string class from the <string>

library. ||
"r#l Tl 5
Fﬂ"“‘;i“mdaﬁ araily
I".l _':"-"-'

Ragisia

A string can contain any combination of alphabets, digits, symbols, spaces, and
control characters. It is treated as a single entity and allows for various operations

like concatenation, comparisen, searching, and manipulation.
Strings in C++ have the following characteristics:

o Sequence of Characters: A string is a collection of characters, arranged in a
specific order. Each character in the string occupies a position or index,

* Immutable: In C++, strings are immutable, meaning that once a string 15
created, its contents cannot be modified directly. Instead, you need to
create a new string with the desired modifications.

» Dynamic Length: Strings can have a variable length, allowing you to store a
flexible amount of text. They can grow or shrink dynamically based on the
requirements.

o Null-Terminated: C-style strings in C++ are represented as character arrays
terminated with a null character ("0'). However, the std::string class handles
null termination automatically.

e String Literals: 5String literals are enclosed in double quotes ("). They
represent a sequence of characters and are automatically converted to
std::string objects.

C++ provides a rich set of features and functions to handle strings efficiently. Here
are the key aspects of working with strings in C++:

1. String Data Type:
o (C++provides a built-in string data type called std::string in the <string>
library.
= |t allows you to declare and manipulate strings easily, without
worrying about memaory allocation and deallocation.
1. 5tring Declaration and Initialization:
& 5Strings can be declared and initialized using various methads:
e std::string str; - Declares an empty string.
e std::string str = "Hello"; - Initializes a string with a specific value.

L]

Rege™

X

s std::string str("Hello™); - Altermative syntax for initialization.
String Operations:
Concatenation: Strings can be concatenated using the + operator or
the += compound assignment operator.
« Comparison: String comparison can be done using operators like ==,
Is, <, 5, <8, 3=,
o Accessing Characters: Individual characters of a string can be
accessed using the subscript operator [] or the at{) member function.
s Length: The length of a string can be obtained using the length() or
size() member functions.
® Substrings: Substrings can be extracted from a string using the
substr() member function.
Input and Qutput:
Strings can be inputted and outputted using standard input/output streams
fcin and cout).
std::getline() function is used to read an entire line of text from input.
String Manipulation:
C++ provides various functions in the <string= library for manipulating strings:
std::stoi(), std::stod(), etc., for converting strings to numeric types.
std::to_string() for converting numeric types to strings.
std::toupper(), std::tolower(), etc., for converting case of characters.
std::find{), std::replace(), std::substr(), etc., for searching and modifying
strings.
5tring lteration:
Strings can be iterated using traditional loop constructs or with range-based
for loops.
Individual characters can be accessed and processed within the loop body.

7. String Memory Management:

Memory allocation and deallocation for strings are automatically handled
by the std::string class.

You don't need to wurr;r about memory management like you would with
character arrays. I'.I

Here are some common string operations in C++

. String Concatenation: The + operator or the += compound assignment
operator can be used to concatenate strings.

std::string str1 = "Hella";

std::string str = "World™;

std::string resull = str1 « "+ str2; [/ Concatenating strings
std::cout << result << std::endl; // Output: Hello World

1. String Length: The length() or size() member functions can be used to get
the length of a string.

std::string str = "Hello”;
std::cout << str.length() << std::endl; /7 Qutput: 3

1. String Comparison:

String comparison can be done using the ==, l=, <, =, <=, >= operators.
std::string stri = "Hello";
std::string str2 = "World™;
if (str1==str2) [
std::cout << “Strings are equal” << std::endl;
Jelse[

std::cout << "Strings are not egual” << std::endl;

4,

6.

Accessing Characters: Individual characters in a string can be accessed
using the subscript operator [] or the at{) member function.

std::string str="Hello"

char firstChar = str[Q]; !/ Accessing the first character

char lastChar = str.at(str.length{) - 1}; // Accessing the last character
std::cout << firstChar << std::endl; /7 Output: H

std::cout << lastChar << std::endl; [/ Output: o

Substrings: The substr() member function is used to extract substrings from
a string.

std::string str = "Hello World™;
std::string substri = str.substr(0, 5); // Extracting the first 5 characters

std::string substr2 = str.substr(6); // Extracting from index & till the end

std::cout << substr! << std::endl; // Output: Hello
std::cout <« substr? << std::endl; [/ Output: World
5tring Input and Output:

Strings can be inputted and outputted using standard input/output streams
(cin and cout).

std::string name;
std::cout << "Enter your name: *;
std::cin =» name;

std::cout << "Hello, " << name << "1" << std::enfq;l

67

7. Finding Substrings: The find(} member function is used to search for a
substring within a string.

std::string str = "Hello World™;
std::size_t found = str.find("World");
if (found != std;:string::npos) {
std::cout << "Substring found at index ™ << found << std::endl;
Jelsef
std::cout << “Substring not found™ << std::endl;

]

8. Replacing Substrings: The replace{) member function is used to replace
occurrences of a substring within a string.

std::string str = "Hello World™;
str.reploce(6, 5, "C++"); // Reploce "World™ with "C++"
std::cout << str << std::endl; // Output: Hello C++

9. Converting Case: The <cctype= library provides functions like toupper() and
tolower() to convert the case of characters in a string.

#include <cctype>
std::string str = "Hello World™;
for {autek ¢ : str}
if (std::islower(ch) [
¢ = std::toupper(c);

Jelse if {std::isupperic)) {

10,

"

¢ = std::tolower(c);

J

std::cout << str << std::endl; // Output: hELLO wORLD

Numeric to String Conversion: The std::to_string() function is used to convert
numeric types to strings.

int num = 12345;

std::string str = std::to_string{num),

std::cout << str << std:;endl; [/ Output; “12345°

String to Numeric Conversion: The <string> library provides functions like
std::stoi() and std::stod() to convert strings to numeric types.

#include <string>
std::string str="3.14%
double num = std::stod(str);

std::cout << num << std:endl; £/ Output: 3.14

3.7 Structures

A structure is a user-defined data type that allows you to group together different
data items of various types into a single unit. Structures provide a way to represent
a collection of related data, similar to a record in other programming languages.

To define a structure, you use the struct keyward followed by the structure name.

Here's the general syntax:

struct StructureName [

Regsl™

/ Member variables (data items)
/{ Member functions (optional)
5
The member variables inside a structure can be of any valid C++ data type,

including primitive types like int, float, double, char, etc., as well as user-defined
types and even other structures.

For example, let's create a simple structure called "Point” that represents a 2D
coordinate:

struct Point [
int x;
int y;

h

In the above example, the Point structure has two member variables, x and y, both
of type int.

Once you've defined a structure, you can create instances (also known as objects)
of that structure type. You can then access the member variables of the structure
using the dot operator (.). Heres an example:

Point p1; // Create an instance of the Point structure
pl.x = 3; /! Access and modify member variables

ply=35;

std:icout << X = "<<plx << ®, y= " << pl.y << std::endl; [/ Print the values

In the above code, we create an instance pl1 of the Point structure and assign
values to its member variables x and y. We can then access and print the values
using the dot operator (.). '(‘~

mli_.l". YLl
o pmwm :

Regl

W -

C++ structures can also have member functions, similar to classes. These functions
are called methods. To define a method inside a structure, you include the function
declaration within the structure definition. Here's an example:

struct Rectangle {
int width;

int height;

int calculateAreaf) {
return width * height;
]
ki

In the above example, we define a structure called Rectangle with member
variables width and height. It also includes a method called calculateArea(), which
calculates and returns the area of the rectangle.

To use the structure’s method, you would create an instance of the structure and
then invoke the method using the dot operator {.). Here's an example:

Rectangle rect;
rect.width = 4;

rect.height = 5;

int area = rect.calculateArea();
std::cout << “Areg = " << grea << std::endl;

In the code above, we create an instance rect of the Rectangle structure, set its
width and height member variables, and then call the calculateArea() method to
calculate the area of the recta?gl . The result is stored in the area variable and
printed to the console, [|

It's important to note that structures have some differences compared to classes
in C++, By default, the member variables of a structure are public, whereas in a
class, they are private. However, you can explicitly specify the access level (public,
private, protected) of the member variables and methods in both structures and

classes using access specifiers.
1.8 Introduction to Flow control

Flow control refers to the ability to alter the order of execution of statements or
blocks of code based on certain conditions or loops. It allows programmers to
control the flow of program execution, making decisions, repeating code, and
directing the program's behavior based on specific criteria.

Flow control statements enable programmers to determine which sections of
code are executed and in what order. These statements include conditional
statements (such as if, if-else, and switch), loop statements (such as while, for, and
do-while), and control statements (such as break, continue, and goto).

Conditional statements, like the if statement and switch statement, evaluate a
condition and execute specific blocks of code based on whether the condition is
true or false. They provide the ability to make decisions and choose different paths

of execution.

Loop statements, such as while, for, and do-while, allow code to be repeated
multiple times. They provide the ability to iterate over a block of code as long as a
specified condition is met. Loops are commonly used for tasks that require
repetitive actions or processing of data.

Control statements, such as break, continue, and goto, allow programmers to
modify the normal flow of execution within loops or switch statements. The break
statement terminates the current loop or switch block, while the continue
statement skips the remaining statements in the current iteration of a loop. The
goto statement is a controversial statement that allows jumping to a labeled
statement within the same function, but its usage is generally discouraged due to
its potential to make code harder to understand anf:ll maintain.

By utilizing these flow control statements effectively, programmers can create

programs that adapt to different scenarios, make decisions based on conditions,

repeat tasks, and control the overall program flow. Flow control is crucial for

writing structured, efficient, and flexible code in C++.

Flow control statements in programming languages, including C++, are used to

control the flow of execution within a program. They determine the order in which
statements or blocks of code are executed based on certain conditions or loops.

Here are some commonly used flow control statements in C++:

1.

if Statement: The if statement allows the execution of a block of code if a
specified condition is true. It is typically followed by an optional else statement
to specify an alternative block of code to execute if the condition is false.
Switch Statement: The switch statement provides multiple branches of code
execution based on the value of a variable or an expression. It allows selecting
one of several code blocks to execute depending on the evaluated value.
while Loop: The while loop repeatedly executes a block of code as long as a
specified condition remains true. It evaluates the condition before each
iteration, and if the condition becomes false, the loop is terminated.

for Loop: The for loop provides a compact way to iterate a block of code a
specific number of times. It consists of an initialization expression, a condition
expression, and an increment or decrement expression. The loop continues
executing as long as the condition is true.

do-while Loop: The do-while loop is similar to the while loop but with a different
execution order. It executes a block of code at least once before evaluating the
condition. If the condition is true, the loop continues; otherwise, it terminates.
break Statement: The break statement is used within loop or switch statements
to terminate the execution of the innermost loop or switch block and continue
executing the next statement after the loop or switch.,

continue Statement: The continue statement s used within loop statements to
skip the remaining statements in the current iteration and proceed to the next

|
\f' }'{a’ stk aprsty. 4510
For i
| == :
73 '

Pagistia

iteration of the loop.

B goto Statement: The goto statement allows transferring control to a labeled
statement within the same function. It is generally discouraged due to its
potential to make code harder to understand and maintain.

19 “If" Statement

The "if” statement in C++ is used to execute a block of code if a specified condition
is true. Here s the syntax of the "if” statement:

if {condition)

{

/f Code to execute if the condition is true

&
‘ Fabe

True
#
L)
L

The "condition” in the "if” statement is an expression that evaluates to either true or
false. If the condition is true, the code block enclosed within the curly braces is
executed. If the condition is false, the code block is skipped, and program
execution continues with the next statement after the “if" block.

Here's an example to demonstrate the usage of the "if” statement in C++:

Hinclude <iostream:>
imt main{)

int num;
std::cout << "Enter a number; “;
stg:ocin == nam;

If [nurm = 0}

T

{
std::cout << "The number is positive,” << std:endl;

]
sidicout << "End of program.” << std:;end|;
returm O;
}
In this example, the user is prompted to enter a number. The "if” statement

checks if the entered number is greater than 0. If the condition is true, it prints
“The number {5 positive.” Otherwise, it moves on to the next statement after the
“if” block. Finally, it outputs "End of program.” to indicate the end of the program.

S0, if the user enters a positive number, the output will be:

Enter a number: 7

The number is positive.

End of program.

If the user enters a negative number or 0, the output will be:
Enter a number: -5

End of program.

int fumbe;

stdcout << "Enter a number: ™
std::cin »> number;

if [number = 0} {
stdizcout << "The number is positive.” =< std:end;

}

if {number < 0] {
std:cout << "The number ks negative,” << std:endl,

}

if {number == 0] {
stdcout << "The number i5 zero.” << std:end,

!
In this example, each "if” statement is independent of the others. It checks a

specific condition and prints a message if the condition is true. Therefore,
multiple messages can be printed depending on the value of the input number.

141 HNested IF Statements

4 il

\yniversity, JE7

. ,
I'-;' 75 / Regsi

A nested “if" statement is an “if" statement that is placed inside another "if"
statement. It allows for more complex conditional branching by providing
additional levels of decision-making. The syntax of a nested "if" statement is as

follows:

if [conditionl] {

M Code 1o be executed If condition] is true

if [condition2] {
Jf Code to be executed if both condition and condition? are true
)
M/ Other code within the outer "if" block
]
/i Code outside the outer | block
Example:
inta= 1

inty="5;

x> yhi

sid:cout << ™x Is greater than v." << std:endl;

if[x%2==0]{
stdicout << "x is even.” << stdzendi;
Jeke |
stdzcout << "y s odd." << std:endl;
}
}else {
std::cout << "x is not greater than v." << stdendf;
)
In this example, the outer “if” statement checks if x is greater than y. If it is, the code
within the outer "if" block is executed. Inside the puter “if” block, there is a nested

L
L

7%
Fof e

“if" statement that checks if x is even or odd based on the condition x % 2 == 0. The
appropriate message is printed based on the conditions.

Nested "if” statements can be extended to multiple levels based on the complexity
of the decision-making process. However, it's important to maintain clarity and
readability in code, so nesting should be used judiciously to avoid excessive

complexity.

110 switch
The “switch” statement in C++ is a control statement that allows for multi-way

branching based on the value of a variable or an expression. It provides a concise
way to handle multiple cases without using multiple "if" statements. Heres the
syntax of the "switch” statement:

switch {expression) {
case valuel:
{f Code to be executed if expression matches valuel
break;
case vatuel:
{{ Code to be executed if expression matches value
break;
[Bdditional cases....
default:
J/ Code 1o be executed if nonie of the cases match
break;
}

The expression is evaluated, and its value is compared to the values specified in
the cases. If a match is found, the corresponding block of code is executed. The
"break” statement is used to exit the switch block once a match is found. If no
match is found, the code within the "default” block is executed (optional).

Here's an example that demonstrates the usage of the "switch™ statement:
It day = 3;

switch (day} {

case 1!
st cout << "Monday” << stdendl,;
break:

case 4
stid;cout << "Tuesday” << std-endl,;
break;

case 3:
std-cout << "Wednesday"® << std:endl;
break;

case 4:
stdcout == "Thursday™ << std:;endl;
brieak;

case 5:
std:;oout << "Friday™ << std::endl;
break;

default:
std::cout << "Weekend” << std:endl;
break;

}
In this example, the value of the variable "day” is evaluated within the switch

statement. Depending on the value, the corresponding case is executed. In this
case, the output would be "Wednesday™ because the value of “day” is 3.

Mote that the "break™ statement is important to prevent fall-through behavior,

which means executing the code in subsequent cases until a break statement is
encountered. If a break statement is omitted, it would continue executing code in
subsequent cases even if their conditions are not met.

The “switch™ statement is particularly useful when you have a limited number of
discrete values to compare against and can provide a more concise and readable

311 while Loop
The "while” loop in C++ is a control flow statement that repeatedly executes a block

of code as long as a specified condition is true. It allows for iterative execution until
the condition becomes false. Here's the syntax of the “while” loop:

while (condition) {
S Code 1o be executed while the condition is true
/{ The condition should eventually become false to exit the loop

}

The condition is an expression that is evaluated before each iteration of the loop.
If the condition is true, the code within the loop is executed. After each iteration,
the condition is evaluated again. If the condition becomes false, the loop is
terminated, and the program continues with the next statement after the loop.

Here's an example that demonstrates the usage of the "while” loop:
int count = 1;
while (count <= 5] {

stdcout << "Count: " << count << std::endl;

count++;

In this example, the variable “count” is initially set to 1. The "while” loop continues
executing as long as the condition "count <= 5" is true. Within each iteration, the
current value of "count” is printed, and then "count” is incremented by 1. The loop
will execute five times, producing the output:

Count: 1
Count: 2
Count: 3 [

Count; 4

Count: 5

Its important to ensure that the condition within the “while” loop eventually
becomes false to prevent an infinite loop. If the condition is always true, the loop
will keep executing indefinitely, causing the program to hang or become
unresponsive.

You can also use control statements like “break” or “continue™ within the “while”
loop to alter its execution flow. The "break” statement can be used to exit the loop
prematurely, while the "continue” statement can be used to skip the remaining
code in the current iteration and proceed to the next iteration.

1112 Do while
The "do-while” loop in C++ is a control flow statement that allows you to repeatedly

execute a block of code while a certain condition is true. The key difference
between the “do-while” loop and the “while™ loop is that the "do-while” loop
executes the code block at least once before checking the condition.

The syntax of the “do-while” loop in C++ is as follows:

da
S Code to be executed
} while [condition];

Heres an example to illustrate the usage of the "do-while” loop:

inti=1;

do {
shdcout << f<s™",
L o

}adhile [<= 5}

In this example, the “do-while” loop is used to print the numbers from 1 to 3. The
loop first executes the code block, which prints the value of i and increments it by
1. Then, it checks the condition i <= 5. If the condition is true, the loop continues,
and the code block is executed again. This process repeats until the condition

becomes false.
The output of the above code will be: 12 34 5.

&0

It's important to note that the condition is evaluated at the end of each iteration.
This guarantees that the code block will be executed at least once, regardless of
the condition. If the condition is false from the beginning, the code block will still
execute once before the loop terminates.

Heres another example that demonstrates the use of the "do-while” loop to

validate user input:
imt nuember;

do
std::oout =< "Enter a positive number: "
stdi:cin == number;

Iwhile {number <= 0}

In this example, the program prompts the user to enter a positive number. It
continues to prompt the user until a positive number is entered. The condition
number <= 0 is checked after the user input to determine whether to repeat the
loop or terminate it.

The "do-while" loop is useful when you want to ensure that a block of code
executes at least once, regardless of the condition.

313 Break
The "break” statement is used to terminate the execution of a loop or a switch

statement. When the “break”™ statement is encountered, the control flow
immediately exits the enclosing loop or switch statement, and the program
continues with the next statement after the loop or switch,

The syntax for the "break” statement is as follows:

break;

Here are some examples to demonstrate the usage of the "break” statement:

» Exiting a loop:
for {inti=1; i<=5; ++)}{

std:cout <€ icc ™ |

if fi==3]{ sty Jaighs

Regisi?

break; /f Exit the loop when | réaches 3

std:cout << "Loog ended,” <= std:endl:

In this example, the “for" loop iterates from 1 to 5. When the loop variable i reaches
the value 3, the "break” statement is encountered, causing the loop to terminate
immediately. The program then continues with the statement after the loop, which
prints "Loop ended.”

[Exiting a switch statement:
int chaoice = 2;
switch [choice) {
case 1:
stdzcout << "Option 1 selected.” << std:endl;
break;
case 2
stdcout << "Option 2 selected,” << std::end|;
break;
case 3:
std::cout << "Dption 3 selected.” << std:end|;
breax;
default:

std::cout << "Invalid option,” << std:endl;

stdzcout << "Switch statement ended.” << std:endl;
Output:
Cption 2 selected.

Switch statement ended.

&2

R

In this example, the "switch®™ statement checks the value of the variable choice.
When choice is 2, the corresponding case is executed, and the "break” statement
is encountered, causing the switch statement to exit. The program then continues
with the statement after the switch, which prints "Switch statement ended.”

The "break” statement is essential for controlling the flow of execution in loops and
switch statements, allowing you to exit prematurely based on certain conditions.

114 Continue

the "continue” statement is a control statement used within loops to skip the
remaining iterations of the loop and continue with the next iteration. It is commeonly
used to skip certain iterations based on a specific condition. The “continue”
statement is typically used with loops like "for” and "while”.

The syntax of the "continue” statement is as follows:
for (initialization; condition; increment/decrement) |

{/f Code befare the continue statement

if {condition_to_skip) {

continue;

/f Code after the continue statement
]
Here's an example that demonstrates the usage of the "continue” statement:
for (int [=10 <=5 i++}{
if (i == 3] {
continwe; J/f Skip the current iteration when | is 3

]

stdvocout o2 =™ ")

Cutput:

1X45

In this example, the "for” loop iterates from 1 to 5. However, when the value of { is
3, the "continue” statement is encountered, and the remaining code within the loop
for that iteration is skipped. As a result, the number 3 is not printed in the output.

315 Goto

The "goto”™ statement in C++ s a control transfer statement that allows you to jump
to a labeled statement within the same function. It provides an unconditional
transfer of control, bypassing normal control flow constructs like loops and

conditional statements. The syntax of the "goto” statement is as follows:

goto label;

b

label:
Jf Statementis) to be executed after the goto

The “label” is an identifier followed by a colon, and it marks a specific location in
the code. The execution of the program will jump directly to the statement
following the labeled position. Here's an example to illustrate the usage of "goto”;

#include <iostream:
int maini) {
int number;
std::cout << "Enter a positive number: ";
std::cin >> number;
if {(number <=0} {

std::cout << "Invalid input, Exiting." << std::endl;

goto end;

)

std::cout << "Entered number: " << number << std::endl:
end:
std::cout << “End of program." << std:endl;

return

)

In this example, the program prompts the user to enter a positive number. If the
entered number is less than or equal to zero, the program jumps to the "end” label
using the "goto” statement, skipping the subsequent code. The "end” label marks
the end of the program, and the final message "End of program” is printed.

While the "goto” statement can be used to transfer control within a function, it is
generally discouraged and considered bad practice in modern programming. The
misuse of “goto” can make code difficult to understand and maintain, leading to
spaghetti code and potential logical errors. In most cases, control flow constructs
like loops and conditional statements provide clearer and more structured

3.16 If-Else

The "if-else” statement in C++ is used for conditional execution based on a certain
condition. It provides an alternative branch of code to be executed when the
condition is false. The general syntax of the “if-else” statement is as follows:

if [condition) {

/f Code to be executed if the condition is true
] else |

M Code to be executed if the condition is false

]

Here's an example to ill:us[rjate the usage of the "if-else” statement:

ift b

std::cout << "Enter a number: "

std::cin >> number;

if (number % 2 == 0} {
stedeout << "The number is even,” << std-endl:
Jelse |

std::cout << "The number i5 odd.” << std::enadl:

|

In this example, the program prompts the user to enter a number. If the number is
divisible by 2 (i.e., the remainder is 0 when divided by), the condition number % 2

== 0 is true, and the code within the “if” block is executed, printing "The number is
even.” If the condition is false {i.e., the number is not divisible by 2}, the code within
the "else” block is executed, printing "The number 15 odd.”

The “if-else” statement allows for mutually exclusive branches of code. If the
condition in the “if" statement is true, only the code within the "if” block is executed,
and the code within the "else” block is skipped entirely. Conversely, if the condition
is false, the code within the “if" block is skipped, and only the code within the "else”
block is executed.

It's important to note that the “else” block is optional. You can have an "if” statement
without an “else” clause, as shown in the previous examples. In that case, if the
condition is false, the program simply continues execution after the "if” block.

111 References

References in C++ provide a way to create an alias or an alternative name for an
existing variable. They allow you to refer to the same memory location using
different names. References are often used as function parameters to pass
variables by reference, enabling the modification of the original variable.

1. Creating a Reference:

To create a reference, you use the & operator after the data type when
declaring the reference variable. For example:

int x=5; [/ Declare an integer variable
intk ref=x; /! Declare a reference tox

In the example above, ref is a reference to the variable x. They both refer to the
same memory location. Any changes made to ref will also affect x, and vice
versa.

1. Using a Reference:

References are used similarly to regular variables, but you don't need to use
the & operator to access the value. For example:

int x=15;

int& ref = x;

ref = 10; [/ Assigning a new value to ref also changes x
std::cout <= x << std::endl; // Qutput: 10

In the code snippet above, assigning a new value to ref also changes the
value of x. When we output x, it will be 10.

I. References as Function Parameters:

References are commonly used as function parameters to pass variables by
reference, allowing the modification of the Ipnginal variables. Consider the
following example:

vold increment{int& num) [

LT+

int main() {
int x = 3;
incrementix);
std:;cout << x << std;:endl; [/ Output: &
return 0;

i

In this example, the increment function takes an integer reference as a
parameter. Any modifications made to num inside the function will affect

the original variable % in the main function.

4. References vs. Pointers:

e References and pointers are similar in that they both provide indirect
access to variables. However, there are differences between them:

e References cannot be reassigned to refer to a different variable once
initialized, whereas pointers can be reassigned to point to different
variables.

s References cannot be null, whereas pointers can be set to a null value,

» Pointers can perform arithmetic operations (pointer arithmetic),
whereas references cannot.

s References provide a more convenient syntax and are often
preferred when you want to create an alias for a variable.

It's worth noting that references are not the same as the “reference” used in Java

1

aliases for variables.

or C#. In C++, references are not object references Tp:}intem to objects, but rather

| II
W i
| nindn Global Ughversty. S50

88 F+::nr‘"'1""""‘?"'1:“[!m

J fféﬁ Regista

References in C++ are a powerful feature that allows for more efficient and

readable code, especially when passing variables by reference in function calls,
They provide a way to work with variables directly, aveiding the need for explicit

pointer dereferencing syntax.

118 Summary

The ebook focuses on a range of topics including expression evaluation, type

conversions, peinters, arrays, strings, structures, and references.

L]

Evaluation of Expressions: The ebook begins by examining the evaluation of
expressions, offering a detailed explanation of arithmetic, logical, and
relational operators. It delves into operator precedence and associativity,
enabling readers to grasp the underlying principles of expression evaluation
in C++,

Type Conversions: The book delves into type conversions, both implicit and
explicit, elucidating the rules and technigues involved in converting
between different data types. By providing practical examples, readers gain
a solid understanding of ensuring compatibility and managing data type
conversions effectively.

Pointers: Pointers, a powerful feature in C++, are thoroughly explored. The
ebook covers pointer declaration, initialization, and dereferencing,
emphasizing their role in memory manipulation and dynamic memory
allocation. It delves into pointer arithmetic and illustrates how pointers
enhance efficiency and flexibility in programming.

Arrays: Arrays, fundamental data structures, are comprehensively
discussed. The ebook covers array declaration, initialization, and accessing
elements. Additionally, it examines array traversal, sorting, and searching
technigues, equipping readers with essential skills for working effectively
with arrays.

Pointers and Arrays: This chapter explores the close relationship between
pointers and arrays. It demonstrates how pointers can be used to iterate
over array elements efficiently and shl::wca?&s the dynamic allocation of
multidimensicnal arrays using pointers.

89

Strings: The ebook extensively covers strings, a vital component of Css
programming. It provides a thorough explanation of string manipulation,
including concatenation, comparison, and searching. Readers also learn
about standard library functions for efficient string handling.

Structures: Structures are introduced as user-defined data types. The ebook
explains the creation and usage of structures, including member variables
and methods. It illustrates how structures can be employed as containers
for related data items, demonstrating structure initialization, access, and
utilization.

References: The ebook concludes with an exploration of references, which
serve as aliases for existing variables. It outlines the creation and application
of references, highlighting their use as function parameters for efficient
variable manipulation.

The "if-else” statement allows for conditional execution, where a block of code is
executed if a specific condition is true, and an alternative block is executed if the
condition is false. It provides a way to make decisions based on certain conditions.
Loops are used to repeat a block of code multuple times uniil a specified condition is
met. The "while” loop repeatedly executes a block of code as long as a condition is
true, The "do-while" loop is similar, but it always executes the block of code at least
once before checking the condition.

The "goto" statement provides the ability to transfer control to a labeled statement
elsewhere in the program. However, the use of "goto” is gencrally discouraged as it
can make the code harder to understand and maintain.

The "break™ statement is used to exit a loop or switch statement prematurely. When
encountered, 1t immediately terminates the loop and continues executing the next
statement after the loop. It is commonly used to exit a loop early based on cerain
conditions.

The "continue” statement is used 1o skip the remaining code within a loop iteration
and move to the next iteration, It allows you to bypass specilic iterations without
terminating the loop entirely.

These control structures provide powerful wols for managing program fow and
executing code selectively or repetitively based on EII'H:l.itiDI'IE. However., it's impm-lnm

|\

a0 A)
For snda Global Uphersity, J5740

Reg=le

319

to use them judiciously and ensure that the code remains readable, maintainable, and

free from unnecessary complexity.

Keywords

Evaluation of expressions: Process of calculating the value of an expression.
Type conversions: Changing the data type of a variable to another
compatible type.

Pointers: Variables that store memory addresses, allowing manipulation of
memaory and dynamic memory allocation.

Arrays: Collection of elements of the same data type, accessed using an
index.

Strings: Sequences of characters, often used to represent text,

Structures: User-defined data types that group related data items into a
single unit.

References: Aliases for existing variables, providing an alternate name to
refer to the same memory location.

C++ 5trings: Objects that represent sequences of characters in C++, providing
various string manipulation operations.

Array Declaration: Creating a fixed-size collection of elements of the same
data type in C++.

Array Initialization: Assigning initial values to the elements of an array during
declaration or later.

Array Access: Retrieving or modifying the value of an element in an array
using its index.

Pointer Declaration: Creating a variable that holds the memory address of
another variable.

Pointer Arithmetic: Performing arithmetic operations on pointers, such as
addition, subtraction, and comparison.

Dynamic Memory Allocation: Allocating memory at runtime using pointers,
enabling flexible memory management.

Structure Initialization: Assigning initial values member variables of a
structure during declaration or later. |

91 For Vive

iﬁnnda Ghbal%wemin- Jainai

VA

Regslr=

Structure Access: Retrieving or modifying the value of member variables in
a structure using the dot operator.

Reference Variables: Aliases for existing variables, providing an alternative
name to refer to the same value or object.

Passing by Reference: Passing variables to functions using references,
allowing modification of the original variables.

Structure Methods: Functions defined within a structure, allowing
operations and manipulations specific to the structure’s data,

Structure Nesting: Defining structures within structures, creating a hierarchy
or composition of related data.

Const References: References that provide read-only access to a variable,
preventing modifications through the reference.

Pointer to Structure: Creating a pointer that points to a structure, enabling
indirect access and manipulation of structure data.

if: Executes a block of code if a specified condition is true.

switch: Evaluates an expression and executes a block of code based on

different cases or values.

while: Repeatedly executes a block of code as long as a specified
condition is true,

for: Executes a block of code repeatedly for a specified number of times,
with a loop control variable.

do: Executes a block of code at least once and then repeatedly as long as
a specified condition is true.

break: Terminates the execution of a loop or switch statement.

continue: Skips the remaining code within a loop iteration and moves to
the next iteration.

goto: Transfers control to a labeled statement elsewhere in the program
{usually discouraged due to its potential to crgate complex and hard-to-
maintain code). I"'.

A
N 5

1
X o
g2 ot '.L -! : 1

320 Review Questions

1

2.

10,

n
1L

13,
14,
15,

16,

17

18.

19,

20,

What is the purpose of type conversions in C++? Provide an example of an
implicit and explicit type conversion,

How do pointers facilitate memory manipulation and dynamic memaory
allocation in C++7 Explain with an example.

Describe the process of declaring and initializing an array in C++, How are array
elements accessed?

How are strings represented and manipulated in C++? Discuss common string
operations and available library functions.

What are structures in C++? How do they differ from classes? Provide an
example of a structure with member variables and methods.

Explain the concept of references in C++. How are they created and used?
Compare references with pointers.

Discuss the advantages of passing variables by reference in function
parameters. Provide an example to demonstrate the impact of passing by
reference.

How are pointers and arrays related in C++? Explain how pointers can be used
to access and manipulate array elements efficiently.

What is the significance of dynamic memory allocation using pointers? Provide
an example of allocating and deallocating memory dynamically.

How can structures be nested within other structures in C++7? lllustrate with an
example the use of nested structures and accessing their member variables.
What is the purpose of the "if-else” statement in C++7

How does a “switch™ statement differ from an "if-else” statement in terms of
functionality and usage?

What is the difference between a "while" loop and a "do-while” loop in C++7
Explain the concept of a loop control variable and its role in a “for” loop.

What is the purpose of the "break” statement in C++? Provide an example
scenario where it would be useful.

How does the "continue” statement differ from the "break”™ statement? Give an
example to illustrate its usage.

Discuss the potential drawbacks and considerations when using the "goto™
statement in C++,

How does the flow of execution change when encountering an "if-else”
statement within a loop!?

Explain the concept of nested control structures and provide an example
scenario where they might be used.

How do flow control statements like "if-else,” loops, and break/continue
contribute to the overall control flow and logic of a C++ program?

3.12 References

1. Shiffman, D. (2016). Learning Processing: A Beginner's Guide to
Programming Images, Animation, and Interaction (2Znd ed.). Morgan
Kaufmann.

Linkeas

0
93 ;'L%‘
For l.rll.-g ananda Gio
|

=

Unit - 4 Functions

Table of Content

Learning Objectives.......oeverie

introduction ...

4.1 Functions

4.4 Default Arguments

lllllllllllllll

4.5 Inline FUmcthonsemamiees
4.6 Recursive FuncHons....onnninn
4.7 Polnters to FURCHONS. ccumuesmmammsmesianas s

4.8 SUMMBNY ccasaemmsnamemes

4.9 Keywords

4.10 Review QUESTHONS voeverienn

4,11 References

Learning Objectives

After studying this unit, the student will be able to:

o

Understand the scope of variables: Gain a comprehensive
understanding of variable lifetimes and visibility within different scopes,
including global, local, and function scopes. Learn to prevent naming
conflicts and write code that is easier to understand and maintain.
Master parameter passing: Explore varipus methods of passing
arguments to functions, such as pass-by-value, pass-by-reference, and
pass-by-pointer. Understand the advantages and limitations of each
method and apply them effectively in your code.

Harness the power of default arguments: Learn how to define default
values for function parameters, making your functions more flexible and
allowing them to be called with varying levels of input. Develop an
understanding of when and how to utilize default arguments in your
programs.

Optimize performance with inline functions: Discover the concept of
inline functions and their ability to reduce function call overhead, thereby
improving program efficiency. Learn to identify suitable scenarios for
inline functions and make informed decisions regarding their usage.
Grasp the principles of recursive functions: Explore the concept of
recursion, where functions call themselves to solve complex problems.
Develop a solid understanding of recursive algorithms and their
application in solving a variety of programming challenges.

Master pointers to functions: Gain proficiency in working with pointers to
functions, which allow you to store and invoke functions dynamically.
Understand the syntax and usage of function pointers, enabling you to
leverage this powerful feature in advanced programming scenarios.
Apply acquired knowledge through practical examples: Throughout the
eBook, engage in hands-on coding exercises and work through real-
world examples to reinforce your understanding of each topic. Apply the
concepts learned to solve problems and lfj robust C++ programs.

‘ wi |
35 For Vi =

I]L""II'HJ

o Enhance problem-solving skills: Develop a problem-solving mindset by
decomposing complex tasks into smaller, manageable functions. Learn
to analyze problems effectively, design efficient algorithms, and
implement them using the concepts covered in this eBook.

o Foster code reusability and modularity: Understand how functions
contribute to code organization and reusability. Learn to design functions
that are modular, independent, and easily maintainable, thereby
enhancing the overall structure and efficiency of your programs.

o Prepare for advanced C++ programming: Lay a strong foundation for
further exploration of advanced C++ topics. The knowledge gained from
mastering functions will serve as a stepping stone to delve deeper into
other aspects of the language, such as object-oriented programming,
templates, and advanced data structures..

Introduction

This eBook will take you on a journey through the intricacies of C++ functions,
exploring key concepts such as scope of variables, parameter passing, default
arguments, inline functions, recursive functions, and pointers to functions. Each of
these topics has its significance, and understanding them will empower you to
write elegant and robust code. In the first section, we will delve into the scope of
variables. You will learn about the lifetime and visibility of variables within different
scopes, including global, local, and function scopes. Understanding variable scope
is crucial for writing maintainable code and preventing naming conflicts.

Mext, we will explore parameter passing in functions. You will discover the various
ways of passing arguments to functions, such as pass-by-value, pass-by-
reference, and pass-by-pointer. We will discuss the pros and cons of each method
and provide examples to solidify your understanding.

Default arguments are another valuable feature in C++ functions that allow you to
provide default values for function parameters. We will explain how default
arguments work and demonstrate their usage in practical scenarigs. This
knowledge will enable you to write flexible funcu'cv that can be called with

varying levels of input. inline functions offer a way to improve performance by
avoiding the overhead of function calls. We will explore the concept of inline
functions and discuss when and how to use them effectively. You will gain insights
into the trade-offs between inline functions and regular functions and leamn to
make informed decisions. Recursive functions are a powerful technique in
programming, allowing functions to call themselves. We will dive into the world of
recursive functions, understanding the underlying principles and exploring their
potential applications. You will gain the skills needed to solve complex problems
and implement elegant recursive algorithms.

Finally, we will unravel the concept of pointers to functions. Pointers to functions
allow you to store addresses of functions and invoke them dynamically. We will
walk you through the syntax and usage of function pointers, helping you
understand their role in advanced programming scenarios. Throughout this eBook,
we will provide clear explanations, code examples, and practical exercises to
reinforce your understanding of these topics, By the end, you will have a solid
grasp of functions in C++, equipping you with the knowledge to write efficient,
modular, and scalable code.

4.1 Functions

Functions in C++ are a fundamental building block of code that encapsulates a
sequence of statements and performs a specific task. They are essential for
organizing and structuring programs, promoting code reuse, and improving overall
program efficiency. In C++, functions are defined using a specific syntax and can
have various characteristics and behaviors,

Here are some key aspects of functions in C++:

1. Function Declaration: A function declaration specifies the function's name,
return type, and parameters (if any). It provides a blueprint for the function's
implementation and allows other parts of the program to call the function.
ayntax: I

return_type function_name({parameter_list);

Ir

Example:

/ Function declaration

int sum(int a, int b);

Explanation: The function declaration specifies the name (sum}, return type
{int), and parameters (a and b) of the function. It informs the compiler about
the existence and signature of the function.

. Function Definition: The function definition contains the actual
implementation of the function. It includes the function's body, which
consists of a sequence of statements enclosed within curly braces.

Syntax:
Copy code
return_type function_name{parameter_list)
i
/{ Function body
/f Statements to be executed
i
}
Example:
{{ Function definition
int sumlint a, int b)
{

intresult=a+h; [\

return result; -
\ ¥ S

498 got | i 'B.L‘.“-ﬁ'ﬁ‘

}

The function definition contains the implementation of the function. In this
example, the function sum takes two parameters (a and b), calculates their
sum, and returns the result as an int value.

. Return Type: Every function in C++ has a return type, which specifies the type
of data that the function will return after executing its statements. The return
type can be any valid C++ data type, including fundamental types, user-
defined types, or even void (indicating no return value).

Syntax:
return_type function_name{parameter_list)
{
{{ Function body
/f Statements to be executed
I
return value; /f Return statement
}
Example:
// Function definition with void retumn type
void greetl)

{

cout << "Hello, World!™ << end|;

}

The return type specifies the type of data that the function will return after
executing its statements. In this example, the greet function has a return
type of void, indicating that it does not return ﬁg.r value.

|

4

Parameters: Functions can accept zero or more parameters, which are
variables used to pass values into the function. Parameters define the input
reguired by the function to perform its task. Each parameter has a type, a
name, and is enclosed within parentheses in the function declaration.

Syntax;
return_type function_name(parameter_type parameter_namea)
{

Ml Function body

J Statemients to be executed

I
Example:

/f Function definition with parameters

int muitiply{int a, int b)

{
intresult=a * b;
return result;

}

Parameters allow values to be passed into functions. In this example, the
multiply function takes two parameters {a and b), multiplies them, and
returns the result.

Function Call: To execute a function and utilize its functionality, it needs to
be called from other parts of the program. A function call includes the
function name followed by parentheses. If the function has parameters, the
values to be passed are provided within the parenfhesem.

100 :I g IM L
by, JEaH
nida
For Vivendy

Globat Ynrersl
\ Ragistr

Syntax:
function_namelargument_list);
Example:

J/ Function call

intx=3,y=5;

int sum_result = sum(x, y);

Explanation: To execute a function and utilize its functionality, we call the
function by providing the required arguments within parentheses. In this
example, the sum function is called with the arguments x and y, and the
returned value is stored in the sum_result variable.

. Function Prototypes: A function prototype is a declaration that provides the
function’s name, return type, and parameter list without the function’s actual
implementation. Prototypes are often placed in header files and allow
functions to be declared before they are defined. They facilitate code
organization and enable separate compilation of program modules.

A function prototype, also known as a function declaration, is a statement
that provides the necessary information about a function before its actual
implementation. It serves as a forward declaration of the function, allowing
other parts of the program to know about the function's existence, retum
type, and parameter list without needing to see its complete
implementation.

The syntax for a function prototype is similar to that of a function declaration:
return_type function_name(parameter_list);

Heres an example of a function prototype:

int sumiint a, int b);

In this example, the function prototype declares a function named sum that
takes two int parameters and returns an int value. It provides the necessary
information about the function's signaturer('rmbh‘ng other parts of the

101 |
RRETSHY .Ir.aur

= Regisire

program to use this function before its actual definition. Function prototypes
are often placed in header files (.h) or at the beginning of a source code file
to provide a clear interface and facilitate modular programming. By
separating the function declaration from its implementation, function
prototypes allow for separate compilation of program modules, reducing

compilation time and improving code organization.

7. Function Libraries: C++ provides numerous pre-defined functions through
standard libraries. These libraries contain a wide range of functions that
perform various tasks, such as mathematical calculations, inputfoutput
operations, string manipulation, and more. To use functions from libraries,

appropriate header files need to be included in the program.

4.1 Scope of Variable

The scope of a variable refers to the region of a program where the variable is
visible and accessible. It defines the part of the program where the variable can be
used, and it determines its lifetime and visibility to other parts of the program.

In C++, there are several types of variable scope:

e Global Scope: Variables declared outside of any function or block have
global scope. They are accessible from any part of the program, including
all functions and blocks. Global variables have a lifetime that spans the

entire execution of the program.
Example:

finclude <iostream>

int globalvariable = 10; // Global variable

void function() L\

{

102

std::cout << globalVariable <« std:endl; // Accessible within functions

int maint}

{
std::cout << globalVariable << std::endl; /f Accessible within main function
return O;

b

Local Scope: Variables declared within a functicn or block have local scope.
They are accessible only within the specific function or block where they
are defined. Local variables have a lifetime limited to the duration of the

function or block execution.

Example:

#include <iostream:
woid function()
H
int localVariable = 5; /f Local variable
std::cout << localVariable << std::endl; // Accessible within function

it mabng)

{

[/ std::cout << localVariable << std::endl; /f Errm]' localVariable is not accessible

autside the function I| |

Unkyersity, Jaipair

103
Registrar

returm O;

#= Function Parameter Scope: Parameters passed to a function have a scope
limited to the function’s body. They behave like local variables within the

function and are accessible only within that function.
finclude <iostream>
void function(int parameter)
{

std:icout << parameter << std::endl; // Accessible within function
}
int main{)

{

/f std::cout << parameter << std::endl; // Error: parameter is not accessible outside

the function
function{10);
return O0;

}

e Block Scope: Variables declared within a block, denoted by a pair of curly
braces [}, have a scope limited to that block. They are accessible only within
the block where they are defined.

Example:
finclude <iostream>
int maini)

{
. m'l‘l;l'-lﬂ

'.'a"-':?'r'

104 e

int blockVariable = 7; /f Block variable

std::cout << blockVariable << std::endl; // Accessible within block

!

/f std::cout << blockVariable << std::end; // Error: blockVariable is not accessible

outside the block
returm O;

1

Variable scope plays a crucial role in managing the visibility and lifetime of
variables. It helps prevent naming conflicts, enhances code readability, and
ensures that variables are only accessible where they are intended to be used. By
understanding variable scope, you can effectively organize and manage variables
in your C++ programs.

4.3 Parameter passing
Parameter passing in C++ refers to the mechanism by which values are transferred

to function parameters when a function is called. It determines how arguments are
passed from the calling code to the corresponding parameters in the function’s
definition. C++ supports different parameter passing methods, including pass-by-
value, pass-by-reference, and pass-by-pointer.

Pass-by-Value:

In pass-by-value, the value of the argument is copied into the function's
parameter. Any modifications made to the parameter within the function do not
affect the original argument in the calling code.

Example:

void square(int num) {
num = num * num; /f Modify the parameter

cout << "Square inside function: * << num << endl;

105 For

int maini) {
intx=5;
square(x); // Pass x by value
cout << "Original value of x: " << x << endl;
return ;
I
Output:
Square inside function: 25
Original value of x: 3
In this example, the value of x is passed to the square function by value, Any
changes made to the num parameter within the function do not affect the original
value of x in the main function.

Pass-by-Reference:
in pass-by-reference, a reference to the argument is passed to the function’s

parameter. This allows the function to directly access and medify the original
argument in the calling code.
Example:
void square(int& num) |

num = num * num; /f Modify the reference

cout << "Square inside function: * << num << endl;
I
int main(]} {

intx=5;

square(x); /f Pass x by reference

cout << "Modified value of x: " << x << end|;

return 0;

}
Output:

Square inside function; 25
Modified value of x: 25

106

In this example, the reference to x is passed to the square function by reference.
The changes made to the num parameter within the function directly modify the
original value of x in the main function.

Pass-by-Pointer:
In pass-by-pointer, a pointer to the argument is passed to the function's parameter.
The function can access and modify the value pointed to by the pointer, allowing
changes to propagate to the original argument.
Example:
void sguare(int® ptr) {

*ptr = (*ptr) * {*ptr}; // Modify the value pointed to by the pointer

cout << “Square inside function: " << *pir << endl;

int main{) {

int &= 5;

square{8ux); /f Pass the address of x {pointer to x)

cout << "Modified value of x: " << x << endl;

retumn O;
I
Output:
Sguare inside function: 25
Modified value of x: 25
In this example, the address of x is passed to the square function as a pointer. The
function dereferences the pointer (*ptr) to access and modify the value stored in x,
resulting in changes reflected in the main function.
Parameter passing methods determine whether modifications made to the
parameter within the function affect the original argument or not. Each method has
its advantages and considerations, and the choice depends on the desired
behavior and the requirements of the program. [

|

|
hn-'l

: Clghal Unkearsity, Jatpr
1for Vivekangnda

4.4 Default Arguments

Default arguments allow to assign default values to function parameters. When a
function is called, if an argument is not provided for a parameter with a default

value, the default value is used instead. This provides flexibility by allowing some
parameters to be optional when calling the function.

The syntax for defining a default argument is as follows:
return_type function_name(parameter_type parameter_name = default_value);
Here's an example that demonstrates the usage of default arguments:

Hinclude <lostream=

void greet{std:string name = "Guest") {
std::cout << "Hello, " << name << "1" << std::endl;

1

int main{} {
greet(); f/ Uses the default value "Guest"
greet{"Alice"); /f Overrides the default value with “Alice™
return 0;

}

Qutput:

Copy code

Hello, Guest!

Hello, Alice!

In this example, the greet function has a default argument for the name parameter,
which is set to "Guest”. When the function is called without providing an argument
for name, it uses the default value. However, if an argument is passed, it overrides
the default value.

108

Default arguments can be specified for one or more parameters in a function,
When using default arguments, it is important to note that parameters with default
values must be defined at the end of the parameter list. In other words, all
parameters with default values should appear after parameters without default

values.

Default arguments are particularly useful when a function has parameters that are
commonly used with a specific value but occasionally need to be customized.
They enhance the flexibility and usability of functions, making the code more
concise and reducing the need for function overloads or separate functions to

handle different cases.

4.5 Inline Functions
Inline functions in C++ are a compiler optimization feature that allows the code of a

function to be inserted directly at the call site instead of performing a function call.
This can improve the performance of small and frequently used functions by
reducing the overhead of function call mechanisms.

To declare an inline function, the inline keyword is used before the function
definition. The function can be defined within the class declaration (for member
functions) or cutside the class declaration (for non-member functions).

Heres an example that demonstrates the usage of inline functions:
#include <iostream>
{/ Inline function declaration
inline int square{int num) {
!
Feturn num * num; /‘f

npaily, Jeipur

int main{} { For

Regmlm

int X =5

int result = square(x); f/ Function call is replaced with the actual code of the function

109

std::cout << "Square: " << result << std::end|;
return ;

b
Qutput:
Square: 25

In this example, the square function is declared as inline. When the function is
called, instead of performing a function call, the code of the function square is
directly inserted at the call site. This eliminates the overhead of the function call
and improves performance.

It's important to note that inline functions are typically used for small functions with
a few lines of code. The decision to inline a function is made by the compiler, which
analyzes various factors such as function size, complexity, and the surrounding
context. The inline keyword serves as a hint to the compiler, but the compiler has
the final say on whether to inline the function or not.

Inline functions can be beneficial for performance-critical code or in situations
where function call overhead needs to be minimized. However, it's important to
balance the benefits of inlining with code size and maintainability. Inlining large or
complex functions may lead to increased executable size and potentially hinder
code readability.

4,6 Recursive Functions
Recursive functions in C++ are functions that call themselves either directly or

indirectly. They solve complex problems by breaking them down into smaller
subproblems and solving each subproblem recursively until a base case is
reached. Recursive functions typically have two parts: the base case and the

recursive case,

The base case specifies a condition that determines when the recursion should
stop. When the base case is reached, the function 5ti:\u= calling itself and returns
|

110 mﬂh‘m}%ﬁ':‘:{. Jora
[:q:qw-ﬂ'%ﬂ"‘a ,

A

a value. The recursive case defines how the function calls itself with smaller inputs
to make progress towards the base case.

Here's an example of a recursive function that calculates the factorial of a number:
#include <iostream:>
int factorial{int n) {

// Base case: factorial of 0 s 1

if{n==0}{

return 1;

Jf Recursive case: factorial of n is n multiplied by factorial of (n-1)
return n * factorial(n - 1);
1
int main(} {
int num = 5;
int result = factorial(num};
std::cout << “Factorial of " << num << " i5; " << result << std;:end|;

return O:

}
Output;
Factorial of 5is: 120

In this example, the factorial function calculates the factorial of a number n. If the
base case n == 0 is reached, the function returns 1. Otherwise, it recursively calls
itself with n - 1 and multiplies the current value of n with the factorial of n - 1 to
make progress towards the base case.

111 :
For Vijekananda Globial Liniversity, Jaqur

Registr=

Example calculates the sum of integers from 1 to a given number:
#include <iostream>
int calculateSum{int n) {

/{ Base case: if nis 1, return 1

if (n==1}{

return 1;

/{ Recursive case: return the sum of n and the sum of integers from 1 to (n-1)

return n + calculateSum(n - 1);

I
int main(} {
int num=5;
int result = calculateSum{numy;
std::cout << "Sum of Integers from 1 to * << num << " is; * << result << std::endl;

return O

1
Qutput:
Sum of integers from 1 to 3 is: 15

In this example, the calculateSum function recursively calculates the sum of
integers from 1 to a given number n. If the base case n == 1 is reached, the function
returns 1. Otherwise, it recursively calls itself with n - 1 and adds the current value
of n to the sum of integers from 1 to n - 1 to make progress towards the base case.

Recursive functions are useful when the problem can be divided into smaller
subproblems that are similar in nature to the uriginilll problem. They provide an

it
partily, A

112 R

Regss®

elegant solution for problems that can be solved iteratively as well. However, it’s
important to ensure that recursive functions have well-defined base cases and are

properly structured to avoid infinite recursion.

4.7 Pointers to Functions

Pointers to functions allow to store the address of a function in a variable. They
provide a way to dynamically select and invoke functions at runtime, enabling
greater flexibility and extensibility in your code.

To declare a pointer to a function, you need to specify the function's signature,
including the return type and parameter types. The syntax for declaring a pointer
to a function is as follows:

return_type [*function_pointer_name)(parameter_types);
Here's an example that demonstrates the usage of function pointers:
Hinclude <iostream:
int add{int a, int b) {
return a + b;
)
int subtractiint a, int b) {
return a - b;
)
int main(} {
int (*operation){int, int); // Declare a function pointer
operation = add; // Point to the add function
int result = operation(5, 3); // Call the function through the pointer

1
std:cout << "Result of addition: " << result << std:;endl;

operation = subtract; // Point to the subtract function {
113 o ‘ !%M‘H favepadr
|

gl

result = operation(5s, 3); // Call the function through the pointer
std::cout << "Result of subtraction: ® << result << std::endl;
return 0;

)
Output:

Result of addition: 8
Result of subtraction: 2

In this example, two functions add and subtract are defined. We declare a function
pointer operation that can point to functions with the same signature (in this case,
taking two int parameters and returning an int). We assign the address of the add
function to operation and call it through the pointer, resulting in the addition of two
numbers. Similarly, we assign the address of the subtract function to operation and
call it through the pointer, resulting in the subtraction of two numbers.

Function pointers are particularly useful in scenarios where you need to
dynamically select and invoke different functions based on certain conditions or
configurations. They provide a level of indirection and runtime flexibility in function
invocation, enabling you to design more generic and reusable code.

It's important to note that function pointers can be assigned nullptr to indicate that
they are not pointing to any valid function. Additionally, when calling functions
through function pointers, make sure that the pointer is not null to avoid crashes
or undefined behavior.

4.8 Summary

In this chapter, we explored various aspects of functions in C++. We covered the
scope of variables, parameter passing mechanisms, default arguments, inline
functions, recursive functions, and pointers to functions. We began by discussing
the scope of variables within functions. Variables declared inside a function have
local scope and are accessible only within that function. We also learned about

the concept of block scope, where variables decla}fd within a block are -F"IY
g, YV

114

visible within that block. Next, we delved into parameter passing, which
determines how arguments are transferred to function parameters. We explored
three methods: pass-by-value, pass-by-reference, and pass-by-pointer. Pass-by-
value involves making a copy of the argument, pass-by-reference uses a
reference to the argument, and pass-by-pointer passes a pointer to the argument.
Each method has its advantages and considerations, depending on the desired
behavior and requirements of the program. We then covered default arguments,
which allow us to assign default values to function parameters. If an argument is
not provided when calling a function, the default value is used. This provides
flexibility by making certain parameters optional and simplifying function calls in
certain scenarios. Inline functions were introduced as a compiler optimization
feature. An inline function's code is directly inserted at the call site instead of
performing a function call. This can improve performance for small, frequently
used functions by reducing the overhead of function call mechanisms.

Recursive functions were explored as a powerful technique for solving complex
problems by breaking them down into smaller subproblems. Recursive functions
call themselves either directly or indirectly, and they rely on base cases to
determine when to stop the recursion. Recursive functions allow elegant and
efficient solutfons for certain problems, but proper base cases and termination
conditions are crucial to avoid infinite recursion.

Lastly, we examined pointers to functions, which enable storing the address of a
function in a variable. Function pointers provide flexibility and runtime selection of
functions, allowing dynamic invocation of different functions based on conditions
or configurations. Understanding functions and their various aspects fis
fundamental in C++ programming. By mastering the scope of variables, parameter
passing mechanisms, default arguments, inline functions, recursive functions, and
pointers to functions, programmers gain a powerful set of tools to design modular,
flexible, and efficient code.

4,9 Keywords

e Functions: Modular blocks of code that perform speciﬁ'; tasks.
[

I
1.1';':#-1_,1‘;1-"{
115 nia Giova
ol -

Scope of variables: The region or portion of the code where a variable is
visible and accessible.

Parameter passing: The mechanism of transferring values to function
parameters during function calls.

Default arguments: Values assigned to function parameters if no argument
is provided during function calls.

Inline functions: Functions defined as inline, allowing the compiler to insert
their code directly at the call site for performance optimization,

Recursive functions: Functions that call themselves either directly or
indirectly to solve problems by dividing them into smaller subproblems.
Pointers to functions: Variables that store addresses of functions, allowing
dynamic function selection and invocation.

Function overloading: The ability to define multiple functions with the same
name but different parameter lists, allowing different versions of a function
to be called based on the arguments provided.

Function templates: A mechanism that allows the definition of generic
functions that can operate on different data types, providing code
reusability.

Function pointers: Variables that store the address of a function, allowing
indirect function invocation and enabling dynamic function dispatch.

Call by value: A parameter passing mechanism where the value of the
argument is copied into the function parameter.

Call by reference: A parameter passing mechanism where the reference to
the argument is passed to the function parameter, allowing direct access
and modification of the original argument.

Call by pointer: A parameter passing mechanism where the pointer to the
argument is passed to the function parameter, allowing access and
modification of the value pointed to by the pointer,

4.10 Review Questions

A
L

What is the scope of a variable in C++7 How does it relate to functions?
Explain the concept of parameter passing in C++. What are the different
methods of parameter passing?

116

1, What are default arguments in C++? How are they useful in function
definitions?

4, Describe the purpose and benefits of using inline functions in C++.

5. What are recursive functions? How do they work? Provide an example.

6. Explain the importance of a base case in recursive functions. Why is it
necessary?

7. What is a function pointer in C++7 How is it declared and used?

. How can you pass a function as an argument to another function in Ce+?

9. Discuss the advantages and considerations when using default arguments
in function declarations.

10. Compare and contrast pass-by-value, pass-by-reference, and pass-by-
pointer in terms of parameter passing mechanisms.

4.11 References

1, Shiffman, D. (2016). Leamning Processing: A Beginners Guide to
Programming Images, Animation, and Interaction (Ind ed.). Morgan
Kaufmann.

Unit - 5 C++ Classes And Data Abstraction

Table of Content

Learning Objectives

Introduction

Introduction to Object-Oriented Programming (OOP) and C++ Classes
C++ Class

Class Structure

Class Objects.

Class scope

this Pointer

Friend to a class

Static Class Members

Constant member functions

Constructors and Destructors

Dynamic Creation and destruction of objects
Summary

Keywaords

Review Questions

References

Learning Objectives

After studying this unit, the student will be able to:

o Understand the concept of a class and its role in object-oriented
programming.

o Define and declare classes in C++, including data members and member
functions.

o Explore the structure of a class, including access specifiers and their
impact on member visibility.

o Instantiate objects from a class and initialize them using constructors.

o Manipulate class objects and access their data using member functions.

o Understand the scope and lifetime of class members.

o Grasp the concept of the “this” pointer and its role in object-oriented
programming.

o Implement friend classes and functions to access private members of a
class.

o Apply best practices for designing and organizing classes for efficient
and maintainable code.

= Gain hands-on experience through practical examples, code snippets,
and exercises.

o Develop a solid foundation in working with C++ classes and data
abstraction.

o Apply the knowledge gained to build object-oriented solutions and
enhance software development skills.

Introduction

In the world of programming, managing complexity is a crucial aspect of
developing robust and maintainable software. Object-oriented programming,
with its emphasis on modularity and reusability, offers an effective approach to
tackle complexity in software design. At the heart of object-oriented
programming lies the concept of classes, which enable us to model real-world
entities and encapsulate their properties and behaviors into cohesive units, C++
provides robust support for object-oriented programming, allowing us to

create classes that define the structure and behavior of objects. This ebook
aims to demystify the intricacies of C++ classes and data abstraction, providing
you with a solid foundation to harness the power of object-oriented
programming. We will begin by understanding the concept of a class and its
role in C++ programming. You will learn how to define a class, its members, and
their visibility within the class. We will explore the various types of class
members, such as data members and member functions, and understand how
they contribute to the overall functionality of a class.

Once we have a solid understanding of class structure, we will dive into the
creation and utilization of class objects. You will learn how to instantiate objects
from a class, initialize them, and manipulate their data using member functions.
We will also explore the concept of constructors and destructors, which
provide a mechanism for initializing and cleaning up object resources,
respectively. As we progress, we will explore the intricacies of class scope and
understand how the visibility of class members is controlled. We will discuss
the use of access specifiers, namely public, private, and protected, to defing
the accessibility of class members from within and outside the class.
Furthermore, we will delve into the fascinating concept of the “this" pointer. You
will discover how the “this" pointer allows objects to refer to themselves,
enabling member functions to access and modify their own data. We will
explore the various use cases of the “this" pointer and understand its role in
object-oriented programming. Finally, we will explore the idea of friends to a
class. You will learn how to declare friend classes and functions that can access
private members of a class, providing controlled access to the internals of a
class. We will examine the implications and best practices of using friends in
your code. Throughout this ebook, we will provide practical examples and code
snippets to illustrate the concepts and techniques discussed. Additionally, we
will include exercises and challenges to reinforce your understanding and give
you hands-on experience in working with C++ classes and data abstraction. By
the end of this ebook, you will have gained a solid understanding of C++ classes
and data abstraction, empowering you to design En-:l implement robust object-

120

ariented solutions in your own projects. So let’s dive in and explore the exciting

world of C++ classes!

3.1 Introduction to Object-Oriented Programming (OOP)
and C++ Classes

Object-Oriented Programming (OOP) is a programming paradigm that organizes

code into reusable and modular units called objects. These objects encapsulate
both data and the operations or behaviors that manipulate that data. OOP
promotes concepts such as abstraction, encapsulation, inheritance, and

polymorphism, enabling developers to create complex software systems with

edse.

In OOP, the key principles include:

L

Encapsulation: Encapsulation involves bundling data and the methods that
operate on that data together into a single unit called an object. This ensures
that the data is accessed and modified only through defined methods,
protecting it from unauthorized access and maintaining data integrity.
Abstraction: Abstraction focuses on representing complex real-world
entities as simplified models within the program. It allows developers to
create classes that define essential characteristics and behaviors while
hiding the implementation details. Users of the class interact with the
abstraction without needing to know its internal workings.

Inheritance: Inheritance enables the creation of new classes based on
existing classes, known as base or parent classes. The derived or child
classes inherit the properties and behaviors of the base class, allowing for
code reuse and promoting a hierarchical structure. It helps to model
relationships and hierarchies among classes.

Polymorphism: Polymorphism allows objects of different classes to be
treated as objects of a common base class. It enables the use of a single
interface to represent different types of objects. Polymorphism can be
achieved through function overloading, re multiple functions with the
same name but different parameters EGE::Z:{!T through function overriding,

where derived classes provide their own implementation of a method
defined in the base class.

5.1.1 C++ Class
In C++, a class is a user-defined data type that serves as a blueprint for creating

objects. A class defines the structure, behavior, and properties of objects that can
be instantiated from it. It combines data members (variables) and member
functions (metheds) inte a cohesive unit, allowing for better organization and
maodularization of code.

Class Definition:

Class is a fundamental concept in C++ that allows you to create user-defined data
types. It serves as a blueprint or template for creating objects. The syntax for
defining a class in C++ {5 as follows:

class ClassMame {
/f Data members [variables)
#f Member functions (methods)
S Access spacifiers

5

Example:

class Circle {

public;
ff Data members
double radius;
/{ Member function
double calculateAreal] {

return 3.14159 * radius ® radius;

Why Use C++ Classes?

C++ classes offer numerous benefits in software development:

%

Abstraction and Encapsulation: Classes allow us to abstract real-world
entities and model them in our programs. By encapsulating related data and
behaviors within a class, we can hide the implementation details and
provide a clean interface for interacting with objects. This enhances code
maintainability and reduces complexity.

Code Reusability: With classes, we can create objects that can be reused in
different parts of our program or in other projects. This saves development
time and effort, as we can leverage existing class definitions to create new
objects with desired properties and behaviors.

Modularity and Organization: Classes promote modularity by encapsulating
related functionality within a single unit. This improves code organization,
readability, and ease of maintenance. Changes made to one class do not
affect other parts of the program, ensuring a higher degree of code
separation and reducing the risk of errors.

Data Integrity and Security: By encapsulating data within a class, we can
control its access and modification. Class members can be defined as
private or protected, restricting direct access from outside the class. This
ensures data integrity and enhances security by preventing unintended
modifications.

Inheritance and Polymorphism: C++ classes support inheritance, allowing
the creation of derived classes that inherit properties and behaviors from a
base class. Inheritance promotes code reuse and facilitates the creation of
specialized classes. Polymorphism, another key feature of OOP, enables
objects of different classes to be treated uniformly, simplifying code design
and promoting flexibility.

5.2 Class Structure

The structure of a class defines its members, including data members and
member functions. Data members are variables _at hold data associated with

objects of the class, while member functions are the actions or operations that can
be performed on the objects. The structure of a class can be organized as follows:

clags ClassMame {
private:;
/f Private data members

public:
// Public data members

private:
{{ Private member functions

public:
J/ Public member functions

k
Example:

class Rectangle {

private:
Jf Private data members
double length:
double width;

public:
/f Public member functions
void setDimensions{double len, double wid) {
length = len;
width = wid;

double calculateAreal) {
return length * width;

124

5.3 Class Objects.

A class object, also known as an instance, is a specific occurrence or realization of
a class. It represents a unique entity with its own set of data and behaviors defined
by the class. Creating objects allows us to work with individual instances and
manipulate their properties and methods,

Syntax for Creating a Class Object:
To create a class object in C++, you follow this syntax:

ClassName objectName; // Declaration of a class object

Once the object is created, you can access its data members and methods using
the dot (.) operator:

objectName.dataMember; /f Accessing a data member of the object
objectName.methodiame(); // Calling a method of the cbject

By creating class objects, you can work with specific instances of a class,
manipulate their data, and invoke their methods to perform actions based on the
defined behavior of the class.

Example 1: Creating a Class Object for a Car
#f Class definition for a Car
class Car {
public:
string brand;
string model;

int year;

void startEngine(} {

cout << "The " << brand << " " << model << " engine is startiRg..." << end);

125

{f Creating a Car object

Car myCar; // Declaration of 2 Car object

JF Bssigning values to the object’s data members
myCar.brand = "Toyota";

myCar.model = "Camny™;

myCar.year = 2022;

/I Accessing the object's data members and methods

cout << "My car is a " << myCar.brand << " " << myCar.model << * from " << myCar.year << "."
<< endl;
myCar.startEngine();

In this example, we define a class called Car with data members (brand, model,

year) and a member function (startEngine). We then create a Car object called
myCar. We assign values to jts data members and access them using the dot (.)

operator. Finally, we call the startEngine method on the myCar object.
Example 2: Creating a Class Object for a Bank Account

J{ Class definition for a BankAccount
class BankAccount {
public;

string accountMumber;

string accountHolder;

double balance;

void deposit{double amount) {
balance += amount;

cout << "Deposit of " << amount << * successful, New balance: 5" << balance << andl;

vold withdraw{double amount) {

126

if |balance >= amount) {
balance -= amount;
cout << "Withdrawal of 5" << amount << " successful. New balance: 5" << balance <<
endl;
}else {

cout << "Insufficient funds, Cannot withdraw 5" << amount << endl;

/I Creating a BankAccount object

BankAccount myAccount; ff Declaration of a BankAccount object

JF Assigning values to the object’s data members
myAccountaccountNumber = "123456785";
myAccount.accountHalder = "lohn Doe®;

myAccount.balance = 1000.0;

/f Accessing the object's data members and methods
cout =< "Account number: ™ =< myAccount.atcountMumber =< endl;

cout << “Account holder: " << myAccount.accountHolder << endl;

cout << "Balance; 5" << myAccount.balance << end|;

myAccount.deposit[S00.0);

myAccount.withdraw(200.0);

In this example, we define a class called BankAccount with data members
(accountMumber, accountHolder, balance) and member functions (deposit,
withdraw). We create a BankAccount object called myAccount and assign values
to fts data members. We then access these members and call the deposit and
withdraw methods on the myAccount object. /' |

5.4 Class scope

Class scope refers to the visibility and accessibility of class members (data
members and member functions) within different parts of a program. In C++, class
scope is controlled by access specifiers: private, public, and protected. These
specifiers determine the accessibility of class members from outside the class and
in derived classes. In other words, the scope of a class refers to the visibility or
accessibility of its members (data members and member functions) from various
parts of the program. C++ provides three access specifiers to control the scope:

= private: Members declared as private are accessible only within the class
itself. They are not visible outside the class or in derived classes.

= public: Members declared as public are accessible from anywhere in the
program, including outside the class.

= protected: Members declared as protected are accessible within the class
itself and in derived classes but not from outside the class.

Let's explore class scope in more detail with examples:
Example 1: Class Scope with Private Access Specifier
class MyClass {

private:

int privateData;

public:
void setPrivateDatalint value) {

privateData = value;

void printPrivateDatal) { te."lﬂ"-: 1

128 e

coul =< "Private data: ™ << privateData << endf,

int maind) {
MyClass myDbject;
myObject. setPrivateData{42);

myObject.printPrivateData(};

#f Accessing privateData directly will result in a compilation error

#f myObject.privateData = 123; ff Compilation error

return O;

I

In this example, the MyClass has a private data member privateData and two
member functions, setPrivateData and printPrivateData. The privateData member
is accessible only within the class itself. In the main function, we create an object
of MyClass called myObject and use the setPrivateData method to assign a value
to privateData. However, attempting to access privateData directly from outside
the class, as shown in the commented line, will result in a compilation error.

Example 2: Class Scope with Public Access Specifier
class MyClass {
public:

int publicData;

129

void printPublicDatal) {

cout << "Public data; " << publicData << end|;

int main(] {
MiyClass myObject;
myObject.publicData = 100;

myOhiect printPublicDatal);

return O

]

In this example, the MyClass has a public data member publicData and a member
function printPublicData. The publicData member is accessible from anywhere in
the program, including outside the class. In the main function, we create an object
of MyClass called myObject and directly assign a value to publicData. We can also
call the printPublicData method to print the value of publicData.

By using access specifiers, class scope allows you to control the visibility and
accessibility of class members. Here's a summary of the three access specifiers

and their implications:

« private: Members declared as private are accessible only within the class
itself. They are not visible outside the class or in derived classes. Private
members are typically used for internal implementation details that should
not be accessed or modified directly from outside the class.

s public; Members declared as public are accessible from anywhere in the
program, including outside the class. Public members form the interface of

T

i

| fu et .
e ke
n:u--zgi e
¥ 1 [k

the class, defining the operations that can be performed on class objects.
They can be accessed and modified directly by code outside the class.

« protected: Members declared as protected are accessible within the class
itself and in derived classes but not from outside the class. Protected
members are often used when implementing inheritance, allowing derived
classes to access and modify the protected members of their base class.

5.5 this Pointer

In ocbject-oriented programming, a class serves as a blueprint for creating objects.
Each object created from a class has its own set of member variables and member
functions. The “this™ pointer is a special pointer available within the member
functions of a class that points to the current object being operated upon.

To understand it better, let's consider an example:

finclude <iostream=

class MyClass |
private:

int value:
public:

MyClassiint value) {

this->value = value;

void printvalue(} {

std::cout << "Value: " << this->value << std::end|;

void setValue{int value) ﬂ

this-»value = value;
I|
131 por \hekenend?

e T St

int main() {
MyClass obj1{42);
My Class obj2(87);

objl.printValuel}; // Cutput: Value; 42

obf2 printValue(); /f Output: Value: 87

objl.setValue(99);
objl.printValue{); // Output: Value: 99

return O;

]

In this example, we have a class named "MyClass™ with a member variable called
"value”. The constructor initializes this variable using the input value passed to it.
The class also has two member functions: “printValue()” and “setValue()".

How, let's focus on the usage of the “this” pointer within the class:

In the constructor: When creating objects, the constructor is called to
initialize the member variables. In this case, we use the “this" pointer to
assign the input value to the member variable "value”. The line this->value =
value; ensures that the correct object’s “value” variable is updated.

¢ |n the member function "printValue()"; Here, we use the “this" pointer to
access the member variable “value” and print its value. By using this->value,
we explicitly refer to the "value” variable of the current object.

= |n the member function "setValue()": Similarly, the "this" pointer is utilized to
access the member variable "value™ and update it with the provided value.

132

In the “main” function, we create two objects of the "MyClass™ class: obj1 and objl.
We then call the "printValue(}" function on each object, which prints the respective
values of their "value™ member variables.

Later, we update the "value" of obj1 using the "setValue()" function and call
"printValue()" again to confirm the change.

The "this™ pointer is essential in distinguishing between member variables of
different objects of the same class, It allows us to access and modify the member
variables of the current object within its member functions.

5.6 Friend to a class

A friend function of a class Is a function that is declared outside the scope of the
class, but it has the privilege of accessing all the private and protected members
of that class. Unlike member functions, friend functions are not part of the class

itself.

A friend function can be a regular function, a function template, a member function
of another class, or even an entire class or class template. When a function or class
is declared as a friend of another class, it is granted special access to the private
and protected members of that class.

Let’s explore some examples to illustrate the usage of friend functions:
Example 1: Friend Function

Binclude <iostreams
class MyClass {
private:

int privateData;

public:
MyClass{int data) |

privateData = data;

friend vold displayPrivateDatalconst MyClass8: obj);

void displayPrivateDatalconst MyClass& ohj) {

stdcout << "Private Data: " << obj.privateData << std;:endi;

int main{) {
MyClass obj{42);
displayPrivateDatalobj); /f Qutput: Private Data: 42
return 0;

}

In this example, we have a class named "MyClass” with a private member variable
called "privateData”. The function displayPrivateData() is declared as a friend of the
"MyClass” class. This allows the function to access the private member variable of
any instance of the class. Outside of the class, we define the function
displayPrivateData{) which takes an object of the "MyClass" class as a parameter.
Within this function, we can access and display the private member variable

privateData of the passed object.

134

Example 2: Friend Class
#include <iostream=

class MyClass {

private:

int privateData;

public:

MyClass(int data) {

privatelata = data;

friend class FriendClass;

class FriendClass {

public:

void displayPrivateData(const MyClass& obj) {

std::cout << "Private Data: " << obj.privateData << std::end|:

K
int mainf) {
MyClass obj(42);

FriendClass friendObj;

135

friendObj.displayPrivateDatalobj); /f Output: Private Data: 42
returm O

}

In this example, we have a class named "MyClass” with a private member variable
called "privateData”. The entire class "FriendClass” is declared as a friend of the
"MyClass" class. As a result, the "FriendClass” has access to all the private and
protected members of the "MyClass™ class.

Within the “FriendClass™, we define the member function displayPrivateData()
which takes an object of the "MyClass™ class as a parameter. Inside this member
function, we can access and display the private member variable privateData of

the passed object.

In the main() function, we create an object obj of the "MyClass” class and an object
friendCbj of the “FriendClass”. We then call the member function
displayPrivateData() of the friendObj, passing the obj as an argument. Since the
FriendClass is a friend of the MyClass, it can access and display the private
member variable privateData.

These examples demonstrate how friend functions and friend classes can be used
to grant special access to private and protected members of a class to external
functions or classes. Friend functions and classes can be useful in certain scenarios
where controlled access to private data is required while still maintaining
encapsulation and data hiding principles.

5.7 Static Class Members

A static class member is a member (variable or method) that belongs to the class
itself rather than an instance of the class. It is shared by all instances of the class
and can be accessed without creating an object of the class.

The "static™ keyword is used to define variables that have static memory allocation.

f,is allocated only once:ant
i \u?r_l\.

1|
vl

\

When a variable is declared as static, its memo

136

remains unchanged throughout the program's execution. Once a static variable is
declared, its memaory allocation is fixed and cannot be modified during runtime.
This means that the variable will retain its value across different function calls or
instances of a class. The static variable essentially persists in memory throughout
the entire program’s execution.

Declaration and Definition:

Static members are declared within the class definition but are defined outside the
class using the scope resolution operator ::. The static keyword is used to declare
a member as static. For example;

class MyClass {
public:
static int my5StaticVariable; /f declaration of static variable

static void myStaticFunction(); // declaration of static function

int MyClass::myStaticVariable = 0: // definition of static variable

void MyClass::myStaticFunctionl) { // definition of static function
f{ function body

}

Accessing Static Members:

Static members can be accessed using the class name followed by the scope
resolution operator ::. They can also be accessed through an object of the class,
but it is more common to access them directly through the class name. For
example: |

int value = MyClass::my5StaticVariable; /f accessing static variable [

137 FH\“L&DETU:IEI Global i), 2
<

I} Hﬂgii'.-"-'

WivClass: mystaticFunctionl); /7 calling static function

Shared among Instances:

Unlike regular members of a class, static members are shared among all instances
of the class. This means that any change made to a static member is reflected in
all instances of the class. Each instance does not have its own copy of the static

member.
Initialization:

Static data members need to be explicitly initialized outside the class. This is
typically done in a source file (.cpp) using the scope resolution operator :.. Static
member variables are initialized only once, before any objects of the class are
created. For example:

int MyClassomyStaticVariable = 42: /7 initlalizing static variable
Memory Allocation:

Static members are stored in a shared memory location that is associated with the
class rather than with individual objects. They are allocated memory when the
program starts and exist until the program terminates. The memory for static
members is not deallocated when objects of the class are destroyed.

Usage Scenarios:

» Counters and statistics: 5Static variables are often used to maintain counts or
statistics across multiple instances of a class. For example, a class
representing employees in a company can have a static variable to keep
track of the total number of employees created.

o LUtility functions: Static member functions can serve as utility functions that
perform common operations related to the class but don't require any
instance-specific data. They can be called directly using the class name
without creating objects.

Example

class MathUtils {

138

public
static double square{double x) { // static member function

return x ® x;

J;
Int maint) {
double number = 5.0;
double result = MathUtils: :square(number); // accessing static member function

cout << "Square of " << number << " i5 " << result << endl;

returm O;

)

In this example, the MathUtils class provides a utility function square that
calculates the square of a given number. Since the function doesn't rely on
any instance data, it can be made static and accessed using the class name.

« Shared resources: Static members can be used to represent shared
resources, such as a database connection or a configuration setting, that

need to be accessed by multiple instances of a class.

It's important to note that static members can only access other static members of
the class. They cannot access non-static members directly because non-static
members are associated with individual instances of the class and require an

object to access them.

139

5.8 Constant member functions

A "constant member function” is a kind of function that can't change any values
inside its own class. You make a function "constant”™ by putting the word "const”
when you write the function,

S0, a constant function can look at the data in its class, but it can't change any of
that data. It's like having “read-only” permission.

Just like we can make functions “constant”, we can also make objects “constant”.
A "constant object” can't be changed once it's created. And because it can't be
changed, it can only use “constant” functions, which also can't change anything.

A “constant” member function in C++ can be defined in a multitude of ways, notably
in three primary methods. The application of the "const” keyword varies according
to the specific context and structure of the function. Below are the detailed
explanations of each method:

1. Declaration of the function within the class:

The basic prototype or declaration of the function involves the use of the “const”
keyword following the function’s name and its parentheses. Here, "return_type”
represents the data type of the value that the function will return. The syntax for
this declaration is as follows:
return_type function_name() const;
In the following example, getMame and getAge are declared as const member
functions within the Person class,
class Person |
private:

shd:strimg nome;

int age;
prurbic:
Person(std;:string n, int a) : name(n}, ogefa) {]
o

std.:string getName{) const;

140 Y

int getAge(} const;
b

1. Definition of the function within the class declaration:
If the function is defined directly within the class declaration, the functions body
is included immediately following its prototype. In this case, the “const” keyword is
placed after the function's parentheses, just before the opening brace of the
function's body. The structure is as follows:

return_type function_name() const

|
/ifunction body

}
Here, the getWidth and getHeight functions are defined directly within the

Rectangle class declaration.
class Rectangle {
private:
int width, height;
public:
Rectangle(int w, int h) : widthiw}, height{h) {}

int getWidth{) const {

return width;

int getHelght{) const {
return height;

3. Definition of the function outside the class:
For functions defined outside the class declaration, the syntax includes the class
name, followed by the scope resolution operator "::"| and then the function name.

l'all pyarstty, Jaigst
For Vivekp!

\ T

141

The “const™ keyword is positioned after the function’s parentheses. The syntax
looks like this:
return_type class_name::function_name({} const
{
fffunction body

]
In this case, the getName and getAge functions are defined outside the Person

class declaration.
class Person |
private:
std:string name;
int age;
pubiic:

Personlstd::string n, int a) : name(n), age{a) [

std::string getName() const;
int getAge|{) const;

std::string Person:getName() const |

refurn name;

int Person::getdgel) const {

return age;
I
These definitions essentially help to reinforce the principle of "const-correctness”
in C++, preserving the immutability of the objects, and ensuring that a function
doesn't modify the data members of its class unintentionally. A constant member
function can access and return the data members of the class, but it cannot modify
them, guaranteeing that the state of an object lmains unchanged following a
function call. Yﬁ

rqarsity, S0

Regst

5.9 Constructors and Destructors
Constructors and destructors are specialized member functions that exhibit

distinct behaviour related to the lifecycle of objects within a class. They are
automatically invoked during the instantiation and termination of class objects,
serving crucial roles in memory management and program stability.

Constructor:

A constructor is a unigue member function within a class, bearing the same name
as the class itself. It is automatically invoked whenever an object of that class is
instantiated. The constructor’s main purpose is to initialize the object’s state by
setting initial values for its member variables. Motably, constructors lack a return
type - not even void.

The general syntax for a constructor in C++ is as follows:
class ClassName|
private:

Jf Private members
public:

{/f Constructor declaration
ClassName(parameters)
{

/{f Constructor body

1

In this syntax, the class is named ClassMame, and the constructor also has the
same name. A constructor can accept any number-of parameters as needed. It's
important to note that constructors do not have a %.um type or return any value.

U
143 For ‘."mlhganar'dﬂ G
fi :

For instance, consider the following example:

class Rectangle {
private;
int width, height;
pliblic:
Rectangle(int w, int h) : width(w], heightih) [} // Constructor
L
Here, Rectangle(int w, int h) operates as a constructor for the Rectangle class.
Upon creation of a new Rectangle object, this constructor initializes the width and
height variables as per the provided values:
Rectangle rect(10, 20); // Instantiates a Rectangle abject with width = 10 and height = 20

A constructor is automatically invoked by the compiler whenever an object of that
class is created. Its principal role is twofold: memory allocation and data member

initialization.

When an object is instantiated, the constructor function is responsible for
allocating the necessary memory for that object, ensuring that it has the space to

store its data and function attributes.

Regarding initialization, a constructor sets the values of the class’s data members.
This can be accomplished in two ways. By default, if no explicit initialization is
provided by the user, the constructor assigns each data member its default value
based on the data type (e.q., integers to zero, pointers to null, etc.). Alternatively, if
the user provides specific values when creating an object, the constructor uses
these values for initialization instead.

For example, consider the following class:
class Rectangle {
private:

int length;

144

int width;
public:

Rectangle(int |, int w] : length{l}, width{w) {}
k
Here, the constructor Rectangle(int L, int w) assigns the user-specified values | and
w to the data members length and width, respectively. Thus, when we instantiate
a Rectangle object as follows:

Rectangle rect{10, 20); // Creates a Rectangle object with length = 10 and width = 20

The constructor allocates the necessary memory for the rect object and initializes
its length and width data members to the values 10 and 20, respectively.

Here are some key points to note about constructors:

|. Access specifiers: A constructor can be declared as public, protected, or private,
Usually, constructors are declared as public because they are used to create
objects and initialize class data members.

L Inheritance: A derived class can call the base class’s constructor if it is not
declared as private.

L Virtual: A constructor cannot be declared as virtual in C++,

There are four main types of constructors in C++;

I. Default constructor: This is a constructor that does not take any parameters. It
initializes data members of the class with predefined values.
class ClassMame|

public:

Classhame()

{
{f Constructor body

L Parameterized constructor: This is a constructor that takes parameters and uses
these parameters to initialize the class's data members.
class ClassMName|

pulblic:

ClassName(int a, string b)

{
Jf Constructor body

I

i Copy Constructor: This type of constructor is used to create a new object as a
copy of an existing object. It takes a single argument, which is a reference to an
object of the same class.

class Classhama(

public:

ClassName{const ClassName& obj)
{
f{ Constructor body

|

)

4 Dynamic Constructor: In this type of constructor, memory for the object is
allecated at runtime using the new operator. Rﬁ

class ClassName{ \

public:

P

ClassMame(int size)

{
M Allocate memorny dynamically
int® arr = new intjsize];

)

ki
Destructor:
Contrarily, a destructor is another specialized member function of a class, invoked
when an object of the class is about to be destroyed, typically upon going out of
scope or when explicitly deleted. A destructor shares the class’s name but is
prefixed with a tilde (-). It cannot return a value, and it does not accept any
parameters. Destructors are generally utilized to release resources that the object
may have acquired during its lifecycle.
class Rectangle {
private:
int *width, *height;
public:
Rectanglelint w, int h] {
width = new int;
height = new int;
*width = w;
*height = h;

|
~Rectangle() { // Destructor /:
delete width;

delete height;

k
In this case, -Rectangle() functions as the destructor for the Rectangle class. This
destructor is called when a Rectangle object is about to be destroyed. Specifically,

147

it frees the memory allocated to the width and height in the constructor, ensuring
no memory leaks occur.
{

Rectangle rect(10, 20); // Instantiates a Rectangle object with width = 10 and height = 20

}// At this point, the rect object goes out of scope, and its destructor is invoked

It iz essential to note that if a constructor or destructor is not explicitly provided
within the class definition, C++ automatically generates a default version. These
default constructors and destructors accept no parameters and perform no

actions.

A destructor signifies a function that is inversed to the constructor. A constructor
functions to instantiate an object of a class, while a destructor’s role is to handle
the deallocation of the memory assigned to the object when it is no longer needed
or at the end of its lifetime. The compiler activates the destructor when the
lifecycle of an object comes to an end; this may occur at the completion of a
program, at the end of a function where the local objects of the function become
unreachable, or in any analogous circumstances.

Contrary to constructors, destructors are not open to overloading. They neither
accept arguments nor do they have a return type or value,

Structural Syntax of a Destructor
The following outlines the fundamental syntax of a destructor in C++:

class Classhame{
private:

/{ Private members

public:
M Declaration of destructor
~ClassMNamef)

[
// Body of destructor

}
i
In the above configuration, the class and the destructor share the same
nomenclature, appended with a tilde (-) in the destructor. Both return type and
retumn value are absent in the destructor. The destructor can be classified as a

public or a private member based on necessity.

Pertinent Details About the Destructor

The destructor represents the terminal member function invoked for an object and
is called into action by the compiler. If the programmer fails to define a destructor,
the compiler takes the initiative to define it. Regardless of its positioning within the
class, the compiler will trigger the destructor since it oversees the call. For
enhanced readability, the destructor is often declared at the end of the class,
denoting its role as the last function to be invoked.

The roles of constructors and destructors are symmetrical but opposite;
constructors are activated at the creation of an object and allocate memory to it,
while destructors are triggered at the object's destruction and deallocate the
Memaory.

How Constructors and Destructors Operate During Object Creation and
Destruction

The constructor represents the first class member function the compiler calls
when creating an object, while the destructor serves as the last function called for
an object. The compiler will autonomously define default constructors and
destructors for a class object if the user hasn't explicitly declared them.

The following piece of code elucidates how constructors and destructors function:
#include <iostreams>

using namespace std;

class ClassMName]

/i Declaration of private class data members
private;

inta, b;

public:

/i Declaration of constructor

ClassNamelint vara, int varB)

{
cout<<"Constructor is invoked"<<end|;

a=vard;

b = varB;

cout<=<"Value of a: "<<a<<endl;
cout<<"Value of b: "<<b<<end|;

cout<<andl;

/f Declaration of destructor
~ClassName()

{

cout<<"Destructor is invoked™<<endl;
cout<=<"Value of a: "<<a<<endl;

cout<<"Value of b: "<<b<<end|;

k

int main()

{
/f Creation of class object using parameterized constructar
ClassMame object{5,b6);

150

return O;
1
In this code, a class with a constructor and destructor is defined. A class object is
instantiated in the main function using the parameterized constructor, and when
the program concludes, the compiler triggers the destructor, printing the values

of the variables.

Both constructors and destructors are unique member functions of a class,
established by the C++ compiler or defined by the wuser. A constructor is
automatically called by the compiler to allocate memory to a class object and
initialize class data members during object creation. On the other hand, a
destructor is summoned when an object is slated for destruction; its principal role
is the deallocation of the object’s memory.

The constructor and destructor share the same name as the class, with the
destructor having an additional tilde (-) operator prefix. Both constructors and
destructors can be assigned as public, private, or protected, although it is
generally preferred to classify the constructor as public. While constructors may
have parameters, destructors don't accept any.

5.10 Dynamic Creation and destruction of objects

C++ allows dynamic creation and destruction of objects, which can be extremely
useful for programs that require flexible memory management. Unlike static
objects that are created at compile-time, dynamic objects are created and
destroyed at runtime.

The 'new’ operator is used for dynamically creating objects, while 'delete’ operator
is used for destroying these objects.

Creation of Dynamic Objects:

The new’ operator allocates memory for the object in the heap, constructs the
object, and returns a pointer to it. Here is the .' i¢ syntax for creating a dynamic
object: '

classMame* pointerName = new className;
If the class has parameterized constructors, you can pass arguments like this:
className® pointerMame = new className(argument(s));

Here, ‘classMame’ is the name of the class, and ‘pointerMame’ is the pointer that
will hold the address of the dynamic object.

Destruction of Dynamic Objects:

When a dynamic object is no longer needed, it should be destroyed to free up
memory. This is done using the ‘delete’ operator, as shown below:

delete pointerName;

After the ‘delete’ operator is called, the destructor for the object is called and the
memaory allocated to the object is deallocated.

Here is an example of creating and destroying a dynamic object:
#include <iostream:=

using namespace std;

class Test |
int data;
public:
Test(int value) {
data = value;
cout << "Constructor called, data = " << data << end|;
)
~Test(} {

cout << "Destructor called, data = " =< data << endi;

152

int main) |
Test* ptr = new Test|5); /f Constructor is called
delete ptr; ff Destructor is called

return O

}

In this example, a dynamic object of the class Test' is created using the new’
operator, and destroyed using the 'delete’ operator.

Keep in mind that it is the programmer's responsibility to destroy dynamic objects
when they are no longer needed. Failing to do so can result in a memory leak,
where memaory that is no longer being used is not returned to the system, reducing
the amount of memory available for other objects.

5.11 Summary

In this ebook, we explored the concept of classes and data abstraction in C++. We
began by discussing the definition and structure of a class. A class serves as a
blueprint for creating objects and defines the properties and behaviors they

pOSSesS,

We delved into the components of a class, including member variables and
member functions. Member variables hold the data associated with an object,
while member functions define the actions that can be performed on the
object.vNext, we explored the concept of data abstraction, which involves hiding
the internal implementation details of a class and exposing only the necessary
fnformation to the outside world. This allows for encapsulation and data security.
We then examined the scope of a class, which determines the visibility and
accessibility of its members, The private and protected access specifiers restrict
direct access to class members, while the public access specifier allows access

from outside the class.

To access the members of a class within member functions, we learned about the

"this" pointer. The "this” pointer refers to the current object and provides a means

to access its member variables and member fulrl-itinm. Furthermore, we studied
|

=i

the concept of friend functions and friend classes. Friend functions are external
functions that are granted access to the private and protected members of a class.
Similarly, friend classes have access to all the members of a class, enabling them
to manipulate private data. By leveraging friend functions and friend classes, we
can selectively expose certain functionalities and provide controlled access to
private data while maintaining encapsulation and data abstraction principles.and
maintainable C++ programs.

We've covered several fundamental aspects of classes in C++ programming in this
section, which are instrumental in developing efficient, readable, and robust code.

We learned about static class members, which, unlike typical members of a class,
are shared among all instances and do not require an object for access. This
unigue attribute makes static members ideal for maintaining counters, creating
utility functions, or representing shared resources across class instances.Constant
member functions offer a means to preserve data integrity by prohibiting
modifications to class data, effectively providing a “read-only” access to the classs
data members.

Constructors and destructors are special class member functions automatically
called upon the creation and destruction of class objects. They play a crucial role
in managing an object’s lifecycle, with constructors facilitating initialization and
destructors ensuring cleanup. Understanding their roles and functionalities helps
write safer and more efficient code. Lastly, we delved into the dynamic creation
and destruction of objects, a feature that provides a level of control over memory
management far beyond static objects. By dynamically allocating and deallocating
memory at runtime, we can create flexible and memory-efficient applications.
Taken together, these elements form a significant part of the object-oriented
programming paradigm, and their judicious use can greatly enhance the

\Ip

§

effectiveness of your programming efforts.

5.12 Keywords

Class: A blueprint for creating objects that defines their properties and
behaviors.

Data Abstraction: The process of hiding internal implementation details and
exposing only necessary information to the outside world.

Member Variables: Variables defined within a class that hold data
associated with objects of that class.

Member Functions: Functions defined within a class that operate on objects
of that class.

Scope: The visibility and accessibility of class members, determined by
access specifiers (private, protected, public).

Private: An access specifier that restricts direct access to class members
from outside the class.

Protected: An access specifier that allows access to class members from
derived classes and within the same class.

Public: An access specifier that allows unrestricted access to class
members from outside the class.

this Pointer: A special pointer in C++ that refers to the current object and
enables access to its member variables and member functions.

Friend Functions: External functions that are granted access to the private
and protected members of a class.

Friend Classes: Classes that have access to all the members of another
class, including private data and member functions.

Static Class Members: Class members that are shared by all objects of the
class rather than being specific to an individual object.

Constant Member Functions: A member function that guarantees not to
madify the object on which it is called.

Constructors: Special functions in the class that are called automatically
when an object of the class is created.

Destructors: Special functions in the class ﬁal are called automatically

when an object of the class is destroyed or goes out of scope.

Dynamic Creation and Destruction of Objects: The process of creating and
destroying objects at runtime using ‘new and 'delete’ operators,
respectively, which helps in managing memory more efficiently.

Memory Management: The process by which a program controls and
coordinates computer memory, assigning portions to variables, data
structures, functions, etc., and freeing it for reuse when no longer needed.
Data Integrity: The accuracy, consistency, and reliability of data stored in a
database, disk, file, or an object in object-oriented programming.

Mew and Delete Operators: In C++, 'new operator is used to allocate
memory at runtime to variables or objects, and ‘delete’ operator is used to
free that memory when no longer needed.

Instance: A specific realization of any object, being a concrete, individual
object that you can manipulate in a program.

5.13 Review Questions

1.

What is the purpose of the “this™ pointer in C++7 How does it enable access
to member variables and member functions within a class?

Explain the concept of data abstraction in C++. How does it contribute to
encapsulation and information hiding?

Describe the difference between private, protected, and public access
specifiers in a class. How do they impact the visibility and accessibility of
class members?

What is the role of friend functions in C++? How do they provide special
access to private and protected members of a class?

How are friend classes different from friend functions? Explain their
significance in terms of accessing and manipulating private data within a
class.

What is a static class member in C++f How is it different from a regular class
member?

How are static class members declared and accessed ina C++ program!?
Explain the concept of constant mEmbEf[l functions in C++. When would you
use a constant member function? |

10.

1.

1L

[}

1,

.

1.

3.14

What restrictions are placed on constant member functions with regards to
modifying class data?

What are constructors and destructors in C++? How do they contribute to
object lifecycle management?

How does the constructor differ from the destructor in terms of
functionality?

Differentiate between default, parameterized, copy, and dynamic
constructors in C++. Provide an example of each.

What is the purpose of the ‘new’ and ‘delete’ cperators in C++7 How are they
used in the dynamic creation and destruction of objects?

How does dynamic memory allocation contribute to the efficiency of a Ce+
program?

Describe a real-world scenario where the use of static class members,
constant member functions, and dynamic creation and destruction of
objects would be beneficial.

References

1. Shiffman, D. (2016). Learning Processing: A Beginner's Guide to
Programming Images, Animation, and Interaction (Znd ed.). Morgan
Kaufmann,

Unit - 6 Data abstraction, Overloading and Inheritance

Table of Content
Leaming Objectives
Introduction
6.1 Drata Abstraction
6.2 Function Cherloading
6.3, Operator Overloading
6.4 Inherilance
f.5. Tvpes of Inhentance
6.6, Class Hierarchy
6.7, Base Classes (Superclasses)
6.8, Derived Classes (Subclasses)
6.9 Summary
6. 10 Keywords

.01 Review Ceestions
6.12 References

158

Learning Objectives

Afler studying this unit, the student will be able to;
o Understand data abstraction's role in simplifying code.

8]

Implement information hiding techniques for secure code.

Understand the concept of function overloading in C++.

Learmn how to declare and define overloaded functions with different parameter

lists.

o Understand the Concept of Inheritance: Explain the fundamental concept of
Inhertance in object-oriented programming and how it enables code reuse and
hierarchy creation.

o Identify the Different Forms of Inheritance: Recognize and differentiate between
various forms of Inheritance, including single, multiple, multilevel, hierarchical,
and hybrid Inheritance.

o Define Base and Derived Classes: Define and implement base (superclass) and
derived (subclass) classes in code, understanding their roles in inheritance
hierarchies,

o Demonstrate Code Reusability: Showcase the practical application of Inheritance

by reusing attributes and methods from a base class in derived classes,

o 0O

Introduction

C++ is an object-oriented programming language that offers a wealth of features to simplify
code development and enhance its efficiency. Among these features are several key aspects
related o classes, which serve as the core of ohject-oriented programming. The principles of
abstraction and information hiding stand as comersiones for constructing robust,
maintainable, and adapuable software systems. Abstraction, as a fundamental concept,
empowers developers o manage complexity by distlling intricate real-world entities into
simplified models that capture their essential characteristics. Through this ebook, we aim o
learn the core principles of function and operator overloading, inheritance and abstraction and
information hiding, elucidating their significance in the development of robust software
sy slems,

Function overloading is a fundamental concept in C++. It allows you to define multple

functions within the same scope with the same ¢ but different parameter lists. The

ol

distinguishing factor is the number ar {ypes of arguments each function expects. This enables
you 1o ereate a set of related functions that perform similar operations but on different data

types or with different argument combinations,

For example, you can have multiple "add" functions, one for integers, another for doubles,

and so on. This makes the code more intuitive and readable as the function names remain

consistent, yet the behavior adapts based on the provided arguments

Operator Overloading:

Operator overloading extends the flexibility of C++ by allowing you 1o redefine the behaviors
of operators like +, -, *, and more, for custom user-defined data types (classes or structures).
This means you can make your custom objects work seamlessly with these operators, just like
built-in types. It enhances code expressiveness and reduces the leaming curve for users of

your custom classes,

For instance, you can define how the + operator should behave when applied to instances of

your custom class, such as for adding complex numbers or matrices.

Inheritance is o foundational concept in object-oriented programming (OOP) that lies at the
heart of creating organized and reusable code, It forms the basis for defining relationships
between classes, allowing for code sharing and creating class hierarchies. It is a8 mechanism
that enables a new class (known as the derived or subclass) to inhent properties and
behaviors from an existing class (known as the base or superclass). This Inheritance allows
developers o model real-world relationships, promote code reusability, and create a
structured class hierarchy.

The Significance of Inheritance:

Inheritance is not merely a programming construct; it is a powerful tool that has sigmficant
implications for software development:

» Code Reusability: By inheriting attributes and methods from a base class, derived
classes can reuse existing code, reducing redundancy and promoting efficiency in

software development.

o Hierarchy and Organization: Inheritance enables the creation of class herarchies,
mirroring the relationships between objects in the real world. This hierarchy makes
code more intuitive and easicr to manage.

» Extensibility: Derived classes can add new attributes and methods or modify existing
ones, allowing for customization while preserving the core functionality defined in the
base class.

Maintenance: Inheritance simplifies code maintenance because changes in the base

class automatically apply to all derived classes, ensuring consistency.

Defining a Class Hierarchy:At the core of Inheritance lies the concept of a class hierarchy. In
this structure, base classes serve as the foundation upon which derived classes are built. The
hierarchy reflects relationships between objects in the problem domain, For instance, a base
class " Animal” might have derived classes like "Dog,” "Cat," and "Bird.”

Differemt Forms of Inheritance:Inheritance can take various forms, each with distinct
charactenistics and use cases. These forms include single Inheritance, Multiple Inheritance,
multilevel Inheritance, Hierarchical Inheritance, and hybrid Inheritance. Understanding these

forms is essential for making informed design choices.

Base and Denved Classes:Base classes, also known as superclasses, provide a bluepnnt for
denived classes, often called subclasses. Base classes define common attributes and methods
shared by derived classes. Derived classes inherit these attributes and methods while having
the flexibility 1o extend or override them.

6.1 Data Abstraction

Data abstraction is a foundational concept in computer science and software engineering that
involves simplifving complex systems by focusing on essential aspects while concealing
unnecessary details, It revolves around creating a clear distinction between the "what" of an
object's behavior and properties from the "how" it is implemented. This approach enhances
code readability, reusability, and maintainability, leading to more efficient software

development.

In data abstraction, complex entities are represented in a simplified manner, emphasizing
their core characteristics and behaviors. This is often achieved through the use of absiract
ruages like C-++, Java, and Python.

classes and interfaces in object-oriented programming |

Univensity, Jarpar

Eﬂﬁ..‘il_‘.i:

By defining abstract classes and interfaces, developers establish a blueprint that outlines the

cssenbinl methods and propertics an object should have, without specifying how those

methods are implemented.

There are two main components of data abstraction:

L,

Data Encapsulation: This involves bundling the data (attributes) and the methods
(functions or procedures) that operate on the data into a single unit, known as a class,
The class provides a well-defined interface through which the outside world can
interact with the data and functionality of the object, while keeping the internal
implementation details hidden. This is also known as encapsulation and allows for
better control over data access and mampulation.

Data Abstraction: This refiers to the process of defining a class in a way that focuses
on the essential properties and behaviors of the object while abstracting away the less
relevant details. For example, if you're designing a class to represent a "Car," you
might focus on attributes like "make,” "model,” and methods like "stan_engine” and

“sccelerate,” while ignoring low-level details about how the engine works internally.

Here are the key points that capture the essence of data abstraction:

-

Essential Characteristics: Dan abstraction focuses on captuning the fundamental
properties and behaviors of objects, distilling them down to their most important
HEpECEs.

Interface and Implementation: The interface of an object comprises the set of
methods that define how external entities can interact with it. The implementation
includes the actual code that carmes out the functionality described in the interface.
Hiding Complexity: Data abstraction shields users from the intricate internal
workings of an object. Users interact with objects through their interfaces, without
needing 10 understand the underlying complexities.

Encapsulation: Encapsulation, which is closely related to data abstraction, involves
bundling data and methods together into a cohesive unit, often referred 10 as a class,
Access to the internal details of the class is controlled through access modifiers like
"public,” "private," and "protected.”

Code Reusability: Abstracted classes and interfaces can be reused across different
parts of & program or in entirely different p , saving development time and

promoting @ modular code structure.

162For ¥V

1.

Maintenance and Evolution: Abstraction makes il easier 1o modify or extend a
system over lime. Changes can be made fo the infernal implementation of a class
without affecting its external imterface, as long &s the interface remains consistent.
Real-World Analogy: Think of data abstraction as similar 1o driving a car. You don't
need 1o understand the intricate mechanics of the engine 1o operaie the vehicle; you
interact with the steering wheel, pedals, and dashboard, which represent the abstracted
interface for controlling the car,

Data abstraction provides a powerful framework for managing complexity in software design.
By creating clear boundaries between the public interface and private implementation, it
empowers developers to build scalable, maintainable, and adaptable software systems.

Benefits of Data Abstraction:

Code Reusability: Abstracted classes can be reused in different contexts, reducing
redundant code and promoting a DRY {Don't Repeat Yourself) approach.

Enhanced Security: Hiding implementation details prevents unintended access and
modification, improving the security of your code.

Code Maintenance: Changes 1o the internal implementation of a class don't affect
external code as long as the interface remains consistent.

Readability and Understandability: Abstracted code is easier to read and understand,
especially for other developers who may interact with or maintain the codebase.
Scalability: Data abstraction supports the creation of scalable software systems by
promoting modular design.

In the context of C++, data abstraction is a fundamental concept within the realm of object-
oriented programming. It involves using classes and access specifiers o achieve
encapsulation and create well-defined interfaces for interacting with objects while hiding

their internal implementation details. Let's explore data abstraction in C++ in more detml:

Classes and Objects: In C4++, a class is a blueprint for creating objects. It defines both
the data (attributes) and the methods (member functions) that operate on that data,
Objects are instances of a class,

2, Access Specifiers: C++ provides three access sﬁciﬁem that control the visibility and
i

sccessibility of class members: [+l

= public: Members with this specifier are accessible from outside the class,

Members declared as public within a class are accessible from outside the class,
meaning that they can be sccessed and manipulated by code that exists outside the
class definition.

class Rectangle |
public:
double length;
double width:
donble cafewlaredrea) |

retur lengith ® widsh;

5

In this example, the length and width attributes are declared as public. This allows
code outside the Rectangle class to directly sccess and modify these attnibutes:

fns mainf) §
Recrangle myRect;
mipRect lengeh = 5.0

meRect width = 3.0

double area = nvRect.calewlatedrear);
A area’ bs calowlated using the public attribuies

retnr)

F
» private: Members with this specifier are only accessible within the class itself.

Members declared as private within a class are only accessible within the class

elais BankAccownt |
private;

doutle hafance;

pabic:
Bankdceount{double inifialBalancel) ; balancefinitialBalance) [}

viid depositfdouble amount) |

balanee += oy

double petBalancel) |

return dalance;

5
In this example, the balance attribute is declared as private. It cannot be accessed
directly from outside the class:

it maing) {

BankAceounimmyAccouwn TO00,0);

A Thiz line would result fn g compilation ermor

A mvAceount. alance = § 3L

mipdeount. depost i 300,04

donble accountBalance = myAccount getBalancef);
o

165

A ‘weconntBalance’ is obtained through the public method

Fergrn (1

s protected: Members with this specifier are accessible within the class and is
derived classes.

Members declared as protected within a class are accessible within the class iselfl
and its derived classes (classes that inhenit from this class).

chass Fetcle
profecied:
it speed;

Pl
Fehiclefing initialSpeed) © speediinitialSpeed)

vald aceeleratefim amonunr) |
speed = gmouni;

int getSpeed(} [
refurn specd.

clasy Car : public Fehicle |
public:
Carfing initialSpeed) - VehiclefinitialSpeed) {}

void increaseSpeadling amonnt) |
speed += amownt; X Speed’ s accessible dufto protected specifier

. e

In this example, the speed atiribute is declared as protected in the Vehicle class. It

is accessible within the denived Car class:

inf maied} |
Carr myCerrf 300,

mvCar.accelerare20); & aecelerate’ is a public method of Vehicle

A This Tine wonld work becanse speed” i protecied in Vehicle
mivCar inereaseSpecdf 300

it carSpeed = myCar. getipeed();

return

/

3. Encapsulation: Encapsulation involves bundling the data and methods that operate on
the data into a single unit (class). The use of access specifiers ensures that the intemal
implementation details of a class are hidden from the outside world, and sccess 1s
restricted to the defined interfaces.

4, Abstraction: Abstraction in C++ is achieved by designing classes in a way that
exposes only the relevant information and behaviors, while abstracting away the
implementation details. Users of a class need to know how to use its public interface
without needing 1o know how it's implemented intemnally.

6.2 Function Overloading

Function overloading is a programming concept that allows you to define multiple functions
with the same name within a programming language or class, but with differenmt parameter
lists. The choice of which function to call is based on the arguments provided during the
function invocation. Function overloading is primarily used in statically typed languages like

C++, Java, and C#. ,.f"
f
The Need for Function Overloading il
I
|
The primary reasons for using function overloading are as ﬁ'ﬂlgf rida Globoi
167 / =

Hug-.:li-d

1 Readability and Clarity: Overloaded functions allow you to use descriptive and
intuitive names for operations that perform similar tasks. This makes vour code more
readable and sell-explanatory.

2 Code Reusability: You can reuse the same function name for different vanations of a
1ask, reducing the need 1o create new function names for each vaniani. This promotes
code reusability.

3 Consistency: It promotes a consistent naming convention for related functions,
making your codebase more organized and maintainable.

Syntax and Declaration of Overloaded Functions

To declare overloaded functions, you provide multiple function definitions with the
same name in the same scope or within the same class, but with different parameter
lists. The syntax varies depending on the programming language, but here is a basic
representation in pseudo-code:

int calculate(int a, int bj;
double calculate(double a, double b);

Here, calculate is overloaded with two different parameter lists, one for integers and
ancther for doubles,

Resolving Overloaded Functions

When you call an overloaded function, the compiler or interpreter determines which
function to execute based on the arguments provided. This process is known as
function resolution or function overloading resolution. It involves analyzing the
number and types of arguments in the function call and selecting the most specific
function that maiches the argument list.

The selection process depends on the programming language's rules for function
resolution. Typically, it follows these principles:

* Exact Match: If an exact match exists between the function's parameter list and

the provided arguments, that function is called.
o
e

AT
i gof Ael®

= Type Promotion: If no exact match exists, the compiler may attempt to promote
the argument types to match one of the overloaded functions.

* Type Conversion: If promotion doesn't work, the compiler may perform type
conversions if they are available and unambiguous.

s Ambiguity Resolution: In some cases. if the compiler cannot decide between
multiple matching overloaded functions due to ambiguity, it will result in a

compilation error.

Function overloading resolution ensures that the most appropriate function is called
based on the arguments provided, providing flexibility while maintaining type safety.

Overloading with Different Parameter Types

Function overloading allows you to define multiple functions with the same name but
different parameter types. This is particularly useful when you want o perform
similar operations on different data types. Here's an example in C4+;

#include <iostream>

i Funetion to add two integers

int add(int a, int b) |

refurn a + b

!

/ Function to concatenate two strings
std::string addistd::string a, std::string b) |

retum a + b

it main{} |

int resultl = add(2, 3); // Calls the first add

iy, JAIpAr

V < Regitr

std::string result2 = add({"Hello, ", "world!"}; // Calls the second add function

with strings.

std::cout<< result] << std::endl; // Output: 5
std::cout<< resuli2 << std=endl; // Output: Hello, world!
return (;

i

In this example, we have two add functions—one that takes two integer parameters
and another that takes two string parameters. The compiler selects the appropriate
function 1o call based on the argument types.

Overloading with Different Number of Parameters

You can alse overload functions based on the number of parameters they accepl.
Here's an example in C++:

#include <iostream=
{f Function to calculate the sum of two integers
int add{int a, int b) {

refurn a 4 b
i
/f Function to calculate the sum of three imtegers
int add(int @, int b, int ¢} {

returmna+ b+ ¢;

int main() {

int result2 = add(2, 3); // Calls the first add function with two integers.

170

it resultd = add(2;, 3, 4% / Calls the second add funciion with three

integers,
std:-cout<< result2 << std::endl; // Ouiput: 5
stdz:cout<< result3 << std;zend!; // Output: 9

return 0

In this example, we have two add functions—one that takes two integer parameters and
another that takes three ineger parameters. The compiler selects the appropriate function o
call based on the number of arguments provided.

Overloading with different numbers of parameters is helpful when you want 10 provide
flexibility in the number of arguments & function can accept, allowing you to perform similar
operations with varying levels of detail or precision.

Function overloading with different parameter types and numbers of parameters enhances the
versatility and readability of your code by enabling you to use the same function name for
related operations on different data types and argument counts.

Overloading Constructors

In ohject-oriented programming, constructors can also be overloaded. Overloading
constructors allows you to create objects of a class with different initializations,
providing flexibility in how objects are created. Each overloaded constructor can have
a different set1 of parameters or parameter types.

Best Practices and Use Cases
Best Practices for Constructor Overloading

s Default Constructor: Provide a default constructor with no parameters to ensure
that objects can be created without mandatory initialization,

= Progressive Initialization: Overloaded constructors should provide progressively
more detailed initializations. Parameters can 7{ ded to s different attnibutes or
properties of an object,

= Avoid Ambiguity: Be cautious when overloading constructors to avoid ambiguity
in object creation. Ensure that each constructor's parameter list 1s distinet enough

that the compiler can distinguish between them.
Use Cases for Constructor Overloading

= Defanlt Values: Overloaded constructors can be used to provide default values
for ohject attnibutes.
= Custom Initialization: Constructors with different parameter sets can allow

objects 1o be initialized in various ways 10 accommodate different scenarios.

= Data Validation: Constructors can perform data validation or transformation
during object creation.

Function Overloading Examples
C++ Constructor Overloading

f#include <iostream=>

class Person {

public:
/! Default constructor
Person() : name("Unknown™), age(0) {}
Constructor with name parameter
Persom{const std::stningd n) : name{n), age(0) {}
{f Constructor with name and age parameters
Person({const std::string& n, int a) : name(n), age(a) {}
f Getter methods for name and age (not shown here)

private:
sid::string name:
int age;

5

int main{) |
Person person | ; // Creates a person with default values.
Person person2(”Alice”); // Creates a person with a specified name.
Person person3d("Bob®, 30); // Creates a person with 8 name and age.
return 0

'

Owverloaded constructors allow vou to create objects with different initializations, making

your ¢lasses more versatile and accommodating various use cases.
6.3 Operator Overloading

The Operator overloading is a feature in many programming languages that allows vou to
define custom behaviors for operators when used with user-defined tvpes (classes or structs).
This enables yvou to extend the capabilitics of operators bevond their predefined functions and

make your code more intuitive and expressive.
Operators That Can Be Overloaded
The following operators can typically be overloaded in many programming languages:

* Arithmetic Operators: +, - *, /, %, elc.

s Comparison Operators: ==, !=, <, >, <=, >=, gi¢,

* Assignment Operators: =, +=, -=, *=, /=, ¢,

s [ncrement/Decrement Operators: +4, —, ¢l

* Unary Operators: +, -, 1, -, elc.

s Subscript Operator (for arrayv-like access): ||

* Function Call Operator (for making objects callable): ()

o Member Access Operators (for accessing class or struct members): =,
* Bitwise Operators:&, |, *, <<, =>, ¢l

The ahility to overload these operators can greatly enhance the . ahility and usability of
your code, especially when working with custom data types.

/
Syntax and Implementation of Overloaded Operators I"
For ,{m%,;amg. Global LAk

173 | o

The syntax for overloading operators varies depending on the programming language.
However, the general idea is to define a special method or function within a class or

struct that provides the custom behavior for the operator.
Here's a general example in C++;
class MyClass {
public:
il value,
{{ Owverload the + operator
MyClass operator-+{constMyClass& other) |
My Class resualt;
result.value = this->value + other.value;

retum result;

X
In this example, the + operator is overloaded to add two MyClass objects together.

Overloading Unary Operators

Unary operators operale on a single operand. To overload a unary operator, you
typically define a member function or a free function that takes no arguments (besides

the implicit this pointer or the object being operated upon) and returns the result of the
operation,
Here's an example in C++ overloading the unary - operator:

class Complex |

public:

double real;
double imag;
Complex operator=() {
Complex result;
result.real = -this->real;
resull.imag = -this->mmag;

return result;

i
Overloading Binary Operators

Binary operators operate on two operands. To overload a binary operator, you usually
define 2 member function or a free function that takes one argument {in addition 10

the implicil this pointer or the object being operated upon) and retumns the result of the
operation.
Here's an example in C++ overloading the binary + operator:
class Vector |
public;
double x:
double y;
Vector operator+{const Vectord&: other) |
Vector result;
result.x = this->x + other.x;
result.y = this->y + ather.y;
Wniverst, =

175
For anda

L Regietaf

retirm pesilt

i
Friend Funetions in Operator Overloading

In some cases, when overloading operators, you may need sccess to private members
of the class or struct. To achieve this, you can use friend functions, which are non-

member functions that are granted access to the private members of a class or struct,
Friend functions can be useful when overloading operators that require access to
private data.

Operator Overloading Examples
Overloading + Operator
Complex operator+{const Complex& a, const Complex& b} {
Complex result;
result.real = a.real + b.real;
result.imag = a.imag + b.imag,
return result;

]

Overloading || Operator (Subscript Operator)
class My Array |
public:
int data] 10];
int& operator] [(int index) |

return datafindex);

176

|
Owverloading << Operator (for Custom Output)
class Person {
public:
gl string name;
ik age;
friend std:ostreamé& operator<<(std::ostream&os, const Persond person) |
os<< "Name: " << person.name << ", Age: " <<person.age;

relurmn o,

&
Best Practices and Use Cazes

Best Practices for Operator Overloading

* Overload operators only when it makes sense in the context of your custom class
or struct. The behavior should be intuitive and follow common expectations.

* Avoid overloading operators in ways that might lead 1o confusion or unexpected
behavior,

= Owverload operators consistently and ensure that their behavior is documented for

users of your class or struct.
Use Cases for Operator Overloading

= Mathematical Operations: Overload operators to perform mathematical operations

0N Custom numeric types or vector/matrix ¢l

s Custom Container Types: Overload the [] operator for custom container classes,
allowing array-like access.

» Complex Numbers: Overload arithmetic operaiors for custom complex number
classes.

» String Concatenation; Overload the + operator for custom string classes.

Custom Output Formatiing: Overload << and >> operators for custom output
formatting and input parsing.

6.4 Inheritance

Inheritance is a fundamental concept in Object-Oriented Programming (OOF) that allows you

to create new classes based on existing classes, It's a mechanism by which a new class, often
called the subclass or derived class, can inherit propertics and behaviors (i.e., fields and
methods) from an existing class, known &s the superclass or base class. Inhentance models an

"iz-a" relationship, where a subclass is a specialized superclass version.

Importance of Inheritance

k.

Code Reusability: Inheritance promotes code reusability by allowing vou to reuse
existing code from a superclass in a subcluss, Instead of duplicating code, you can
extend and modify the superclass's behavior as needed. This reduces redundancy and
makes your code more efficient and maintainzble.
Abstraction: Inheritance helps in creating an abstraction hierarchy. You can define
common attributes and methods in a superclass, and the subclasses can provide more
specific implementations or override those methods 10 suit their needs. This
abstraction allows for a more organized and structured codebase,
Polymorphism: Inheritance is closely related to polymorphism, another key concept
in OOP, Polymorphism allows objects of different classes to be treated as objects of a
common superclass. This flexibility enables you to write more genenc and flexible
code that can work with a variety of related objects.
Simplifies Maintenance: When you need 1o make changes or add features o your
software, having a well-designed inheritance hierarchy can make the task easier. You
can make updates in the superclass, and those changes will automatically apply to all
its subclasses. This reduces the risk of inlmdl.Tj:Jm errors and simplifics maintenance.

\

5. Elimination of Redundancy: Inheritance eliminates redundancy in your codebase.
You can define common sttributes and methods once in a superclass, and multiple
subclasses can inherit and wse them. This saves time and effort by not having to
rewrite the same code in multiple places.

6. Consistency: Inheritance promotes a consistent design across related classes. If you
make changes or bug fixes in the superclass, those changes propagate to all
subclasses, ensuring they stay consistent with the updated logic.

7. Scalability: As your soltware evolves, you can easily extend the inheritance hierarchy
by creating new subclasses without altering existing code. This scalability allows your
codebase 1o grow and adapt to new requirements with minimal disruption.

8. Improved Debugging: Inheritance simplifies debugging because issues in shared
functionality are ofien centralized in the superclass. Fixing a problem in one place
{the superclass) can resolve issues in multiple places (subclasses).

6.5 Types of Inheritance

Inheritance allows you 1o create a new class (called a derived or child class) from an existing
class (called a base or parent class). The derived class inherits properties and behaviors (i.e.,
data members and member functions) from the base class. This concept promotes code
reusability and the creation of hicrarchics of classes. In C++, inherilance is one of the four

pillars of OOP, alongside encapsulation, polymorphism, and absiraction.

There are several types of inheritance in C+:

For anda Giuws

179 REEI.';'.illl

Virtual
Inheritance

Hybrid Single
Inheritance Inheritance

Hierarchical

Inheritance

Multi leyel

Inheritance

Fig — Twpes of Inheritance

Single Inheritance:
In single inheritance, a derived class inherits from a single base class,
This is the simplest form of inheritance.
Example:

class Animal {

ff ...
K
class Dog : public Animal |

W o

180

Example

#include <iostream>
fi Base closs
class Animal |
public:

void eat() |

std:;cout=<< "Animal is eating.” << std::endl;

kK
#f Derived class inherting from Animal
class Dog : public Animal {
public:
void bark() |
std:-cout<< "Dog is barking. " << std:zendl;

h
int maini} |

{/ Create an object of the derived class

Dog myDog;

/I Access methods from both base and derived classes
myDog.eat(); // Call the base class method
myDog.bark(): // Call the derived class method

return (;

!

In this example:

+ Wedefine a base class Amimal with o method eat.

o We create a derived class Dog using single inheritance, where Dog inherits from
Animal,

+ Inthe main function, we create an object myDiog of the Dog class.

» We can access the eat method from the base class and the bark method from the
derived class using the myDaog object.

Multiple Inheritance:

Multiple inheritance allows a derived class to inherit from more than one base class,

It's ¢ powerful but complex feature and can lead to the "diamond problem” where ambiguities

BrESe.
Example:
class Shape |
i
%
class Color |
[
i

class ColoredShape : public Shape, public Color |
7
Y
Example
#Hinclude <jostream=>
{f First base class

clazs Shape |

public:

Shapelint sides) : numSides{sides) |}
void ShowSides() |
gid:seout=< "Number of sides; " <==pumSides<< std:;endl;
}
private:
int numSides;
fs
/! Second base class
class Color |
public:

Coloriconst std::string&elr) : color{clr) |}

void ShowColor() |
sid::cout<< "Color: " <<color<< std::endl;
J
private;
std::string color;
Y
(I Derived class inheriting from both Shape and Color
class ColoredShape: public Shape, public Color |
public:
ColoredShape{int sides, const sid::string&elr) : Shape{sides), Color{clr) |}
void Showlnfol) |
ShowSides(); [/ Accessing the ShowSides() method from Shape
ShowColor(); // Accessing the ShowColor() method ffom Color

RE] e

i

inl maini} §

ColoredShape square(4, "Red");

square. ShowInfo(): // This calls methods from both base classes

retarn 0

b

In this example:

* We have two base classes, Shape and Color, cach with its own properties and
methiods,

* The ColoredShape class is derived from both Shape and Color using multiple
inheritance. It inherits properties and methods from both base classes,

o [In the main function, we create an instance of ColoredShape called square and
initialize it with the number of sides and color,

* We then call the Showlnfo method of square, which in wrm calls methods from
both base classes (ShowSides from Shape and ShowColor from Color).

singis Inhartance Mubtiphe inhartance ibuitiLavel InBenzsncs
Biase Class Base Clxss 1 [Base Class 2 B Dlam
M o t
s ; - Darived Clazs 1
-
| | T
Detved Clags Inmml l:tuil P
My B BnhanALRER
Bierarchiad inbaditance |
MMJ
| Baie o
[= 170 e '\-_____.
: —
L T ¥ Class 1| hurm-u Ehn:|
e '-.__\._- | it

Fig = Types of Inheritance

Multilevel Inheritance:

 Multlevel inhentance involves a chain of inhentance with multiple levels of classes.

o A derived class inherits from a base class, and another class can inherit from the

derived class, creating a hierarchy,
Example:
class Vehicle |
{1 .
t

class Car : public Vehicle |
/-

¥

class Sedan ; public Car |

.

Example
#include <iostream>
i/ Base class
class Animal {
public:
void catl) |

std; jocout=< " Animal is eating." << std;;endl;

{1 First level denved class A
hrersily, <=5
For ¥i

185)\ Regsra

¢lass Mammal ; public Animal |
public:
void rund) |

std::cout=< "Mammal 15 running," << std:endl;

H
ff Second level derived class
class Dog : public Mammeal |
public:

void bark() |

std: cout=< "Dog is barking.” << std::endl;

b
int main(} {
Dog myDog;
/f Using functions from different levels of inheritance
myDog.ea(); Inherited from Animal
myDog.runiy; /" Inherited from Mammal
myDog. bark(); // Defined in Dog
return 0;
|

In this example:

& Animal is the base class, which has a method eat.

s Mammal is a derived class that inherits from Animal and adds a method nun.

» Dog is another derived class that inherits from Mammal and adds a method bark.
186

* The mun function demonsirates the use of these classes. myDog is an instance of the
Dog class, and it can access methods from all levels of the inheritance hierarchy: eat
from Animal, run from Mammal, and bark from Dog.

Hierarchical Inheritance:

* In hierarchical inheritance, multiple derived classes inherit from a single base class.
= This creates a hierarchy of classes with a common ancestor.
Example:
class Animal |
e
i
class Dog : public Animal {
|
ki
class Cat : public Animal |
e

k

finclude <iostream=>

using namespace std;

// Base class

class Animal |

public:
void eat() |

cout==< "Animal is eating.” <<endl;
i

157 For

‘I-T'.Lllglﬁ-‘.:.-'_

i
/f Derived class |
class Dog : public Animal |
public:
void bark() {
cout<< "Dog is barking." <<endl;
'
it
/i Derived class 2
class Cat = public Animal |
public:
void meow() |
cout<< "Cat 15 meowing." <<endl;
!
¥:
int main() |
Dog myDog;
Cat myCat;
/f Using methods from the base class
myDog.eat();
myCat, cat();

/! Using methods from the derived classes
myDog. bark()
myCat.meow();

Regst

return (0

In this example:

* Animal is the base class, which has a common behavior eat.

s Dog and Cat are derived classes that inhent from Animal.

» Both Dog and Cat have their own unique behaviors, bark and meow, respectively.

» In the main function, ohjects of Dog and Cat are created and used to demonstrate the
inheritance hierarchy.

Hybrid Inheritance:

» Hybrid inheritance is a combination of two or more types of inheritance mentioned
above.

= [t often involves complex class hierarchics.

Example:

class A |
L/ .

h

class B ; public A {
W is

HE

class C ; public A {
b B

B

class [; public B, public C |
W o

H

Example
#include <iostream>
using namespace std;
/! Base class
class Animal §

public:

189

void eat() {
cout<< "Animal is eating” <<endl;
!
i
{! First level of derived classes
class Mammal : public Animal |
public:
void giveBirth{) §
cout=< "Mammal gives birth" <-<endl;
i
R
class Bird : public Animal |
public:
void layEggs() |
cout==< "Bird lays eggs® <<endl;
|
i
{{ Second level of derived classes
class Bat : public Mammal, public Bird |
public:
void fly() |
cout<< "Bat can fly" <<endl;
i
15

int main() |

190

Bat bat;
/I Accessing methods from different levels of the hierarchy
bateat(yy / Accessing Animal's method
bat. giveBirth(); // Accessing Mammal's method
bat layEggs(); // Accessing Bird's method
bat.fly(); // Accessing Bat's method
return O

!
In this example:

* Animal is the base class with 2 method eat.

« Mammal and Bird are derived from Animal, representing two different types of
animals.

o Batis aclass derived from both Mammal and Bird, demonstrating hybrid inhentance.

® The Bat class inherits methods from both Mammal and Bird, as well as from the
common base class Animal,

* In the main function, an instance of Bat is created and metheds from all levels of the
hicrarchy are accessed.

Virtual Inheritance:

* Virtual inheritance is used to avoid ambiguity and the diamond problem in multiple
inheritance.

* [t ensures that only one copy of a base class is inherited, even if it appears multiple
times in the inheritance hierarchy.

e Achieved by using the virtual keyword when inheriting.

II b3k, JApUr
191 For Vﬁtﬁnarﬂa Glcha f.Jn. arsity, 187
|

Y| i

Example:

class Mammal ; virtual public Animal |

'}

k:
class Bird ; virtual public Animal |

i

H
class Bat : public Mammal, public Bird |

i
%

Each type of inheritance has its own advantages and use cases. The choice of which type o
use depends on the design of your software and the relationships between classes in vour

program.
6.6 Class Hierarchy

The Class Hierarchy is a crucial concept in Object-Ornented Programming (OOP) that
represents the relationships berween classes in a structured and organized manner. It involves
the creation of a hierarchy of classes, where each class is organized into a parent-child
relationship. These relationships are established through Inheritance, with a base class (also
known as a superclass or parent class) and one or more derived classes (also known as

subclasses or child classes).

Understanding Class Hierarchies:

e Base Class (Superclass): The base class is the top-level class in the hierarchy. It
defines common attributes and behaviors that are shared among all classes in the
hicrarchy, It serves as a template for the derived classes. The base class typically
contains general methods and properties that are relevant to all subclasses.

* Derived Classes (Subclasses): Derived classes are the classes that inherit properties
and behaviors from the base class. They extend or specialize the base class's
functionality by adding their unique attributes or methods. Derived classes can also

override or modify the behavior of inherited methods.

192

& Inheritance: Inheritance is the mechanism that establishes the class hierarchy, I
allows derived classes to inherit the base class's charactenistics (ficlds and methods).
This promotes code reuse, abstraction, and polymorphism within the hierarchy.

o Yig-a" Relationship: Class hierarchies ofien represent an "is-a" relationship. This
means that a derived class is a more specialized version of the base class. For
example, if you have a base class called "Vehicle," derived classes like "Car" and

"Bicyele" are more specific types of vehicles.
The Role of Base and Derived Classes;
Base Class (Superclass):

s Defines common attributes and methods.
s Serves as a blueprint for derived classes,

o Typically contains more general or abstract implementations.
Derived Classes (Subclasses):

® Inherit attributes and methods from the base class,

o [Extend or customize the functionality of the base class.

Can override inherited methods to provide specific implementations.
s Add their own unigoe attributes and methods.

6.7 Base Classes (Superclasses)

Generic Base Classes, also known as Superclasses or Paremt Classes, serve as the foundation
for class hierarchies in Object-Oriented Programming (O0OP). They define commeon atiributes
and methods that are shared among multiple derived classes. Here, we'll discuss how to
define base classes, what common aftributes and methods they may contain, and the concept
of access modifiers in OOP.

Defining Base Classes:

To define a base class in code, vou simply create a class with the attributes and methods
representing the shared characteristics and behaviors of the objects it will model. Base classes
often serve as templates for denved classes, so they p a blueprint for what denved

classes should inherit and override,

Commion Attribates and Methods:

= Attributes: Base classes may have attributes representing common properties of the
objects they model. For example, if you're defining 4 base class for shapes, common
attributes might include color, size, or position.

* Methods: Base classes may contain methods that provide common behaviors
applicable to all derived classes. For example, a base class for geometric shapes could
have a method called the area that calculates the area of the shape. Denived classes
would then inherit and possibly override this method to suit their specific shapes.

Access Modifiers (public, protected, private):

Access modifiers control the visibility and accessibility of class members (attnbutes and
methods). They determine which pans of your code can access these members. Common

access modifiers in many programming languages include:

s Public: Members marked as public are accessible from anywhere, both within and
outside the class, This is the default access level in many programming languages.

» Protected: Members marked as protected are accessible within the class and its
derived classes. They are not accessible from outside the class hierarchy.

* Private: Members marked as private are only accessible within the class nsell. They
are not accessible from derived classes or external code.

Example Base Class Implementation:

Please note that this is a simplified example to illustrate the concept of implementing base
classes and derived classes in C. In real-world scenarios, object-onented features are better
supporied and more convenient in languages like C++

6.8 Derived Classes (Subclasses)

Templates In C++, creating derived classes (also known as subclasses) involves defining o
new class that inherits attributes and behaviors from an existing class, known as the base
class or parent class. Here's a step-by-step guide on how to create derived classes in Ci:

1. Define the Base Class (Superclass):

First, you need to define the base class, which comains the common attributes and methods
that you want to share among the derived classes. Here's an example of a simple base class
called Shape:
class Shape {
protecied: /f Access specifier for subclass access
std::string color;
public:
Shape{const std: :string& _color) : colon_color) |}
virtual double area() const = 0; // Pure virtual function
s

In this example, we've defined a base class Shape with 8 member variable color and a pure
virtual function area{). The area() function is marked as pure virtual (= 0), indicating that it
must be overridden by any derived class,

2. Create the Derived Class:

To create a derived class, use the class keyword followed by the derived class name, a colon
:, and the access specifier (public, protected, or private). Then, specify the base class from
which you want to inherit:
class Circle : public Shape |
private:
double radius;
public:

Circle(const sid:sting& color, double radius) : Shapel color),
radius{_radius) {}

double arcal) const override |

return 3. 14159 * radius * radius;

195

'

In this example, we've defined a derived class Circle that inherits from the Shape base ¢lass.
We also have a member variable radius specific to the Circle class. We ovemde the area()

function 1o provide a specific implementation for circles.
1. Create Instances of Derived Classes:
You can create instances of denived classes just like any other class:

int main(}) |
Cirele myCircle("Red”, 5.0);
double circleArea = myCircle.areal);
sid::cout<< "The area of the circle is: " <<circleArea<< std::end];
return 0;
t

Here, we create an instance of the Circle class and use its member function area() to calculate

the area of the circle.
4. Accessing Base Class Members:

In the derived class, you can access the base class members using the :: operator or through
the constructor initialization list In the Circle class constructor, we use the base class

constructor to initialize the color member:
Circle{const std::string& _color, double _radius) : Shape{_color), radius(_radius) {}
This way, you initialize the base class part of the object.

By following these steps, you can create derived classes in C++ that inherit attributes and
behaviors from a base class, allowing you to model more specialized objects while reusing
common functionality. Additionally, polymorphism is supporied through the use of virtual
functions, enabling dynamic dispatch and runtime method resolution when dealing with
objects of the base and derived classes.

R

6.9 Summary

Tius chaprter delves into the imponance of encapsulating data and functionality within a class
to achieve data abstraction and information hiding, thereby promoting better code
organization and muntenance. Here's a summary of the key points covered in the chapter:

Data Abstraction:Data abstraction is the process of simplifying complex reality by modeling
classes that represent real-world entities. It involves focusing on the essential characteristics
of an object while hiding unnecessary details. By defining classes that abstract data and
operations, programmers can create higher-level structures that are easier to work with.

Access Control and Encapsulation:C++ offers access control modifiers like public, private,
and protected. By designating certain members as private, the class can control which parts of
its implementation are exposed to the outside world, Encapsulation ensures that the internal
state and methods of o class are shielded from direct external access, promoting data integrity
and reducing potential sources of bugs,

Benefits of Information Hiding:Information hiding improves code maintainability and
reduces dependencies between different parts of the codebase. Changes o the intemnal
implementation of a class won't affect the external code that relies on its interface, as long as
the interface remains consistent. This separation of concerns simplifies testing, debugging,
and overall software evolution.

Use Cases of Data Abstraction and ADTs:Data abstraction and ADTs are particularly
useful when dealing with complex systems, where multiple components need to interact
while keeping their implementations separate. Common examples inclede handling file
systems, databases, networking protocols, and more. effonts.

Function Overloading:

Function overloading allows you to define multiple functions with the same name but
different parameter lists. This enhances code readability by providing a consistent interface
for related functions that perform similar tasks on different data types or with different
argument combinations.

Operator Overloading:

Operator overloading extends C++ by allowing you to redefine the behaviors of operators

like +, -, *, etc., for user-defined data types. It makes ¢ objects work seamlessly with
197

For Yiekananda Giobsl Unieersy, vz
B

I - o

these operators, enhancing code expressiveness and reducing the learning curve for users of
your classes.

Inheritance:

Inheritance is a fundamental concept in object-oriented programming (OOFP) that allows you

to create new classes based on existing classes. It enables the creation of a hierarchy of

clazses, where derived classes inherit properties and behaviors from base (parent) classes.

Inheritance promotes code reuse and establishes an "is-a" relationship between classes.

6.10 Keywords

Data Abstraction: Simplifving complex reality by modeling classes that represent
real-world entities while hiding unnecessary details,

Encapsulation: Restricting direct access to a class's internal state and methods,
promoting data integrity and reducing external dependencies.

Information Hiding: Concealing the implementation details of a class while providing
a well-defined interface for external interaction,

Access Control: C++ modifiers like public, private, and protected that manage the
visibility and accessibility of class members.

Modularity: Breaking down a system into smaller, manageable components that can
be developed and tested independently.

Function Overloading: Function overloading is a feature in C++ that allows multiple
functions in the same scope o have the same name but with different parameters,
Operator Overloading: Operator overloading is a feature in C++ that allows you 1o
redefine the behavior of operators, such as +, -, *, etc,, for user-defined data types.
Inheritance: Inheritance is a fundamental concept in object-oriented programming
where a class (derived or child class) inherits properties and behaviors from another
class (base or parent class).

Base Class:A base class, also known as a parent ¢lass, is the class from which other
classes inherit properties and behaviors,

Derived Class:A derived class, alse known as a child class, is a class that inhenits
properties and behaviors from a base class.

inheritance in which a derived class

Single Inheritance:Single inheritance is a form
inherits from & single base class.

Multiple Inheritance:Multiple inheritance is a form of inhentance in which a derived
class can inherit from multiple base classes.

Multilevel Inheritance:Multilevel inheritance is a form of inheritance where a derived
class is derived from another derived class, creating a hierarchy of classes.
Hierarchical Inheritance:Hierarchical inheritance is & fonm of inheritance in which
multiple derived classes inherit from a single base class, creating a branching
hierarchy.

Hybnid Inhentance:Hybnd inheritance is a combination of two or more forms of
inheritance, often including multiple and multilevel inhertance.

Method Ovemiding:Method overriding is a feature of inheritance where a denved
class provides a specific implementation for 8 method already defined in the base
class.

Dynamic Binding:Dynamic binding, also known as late binding or runtime
polymorphism, is the process of determining at runtime which version of a method to
call based on the actual object’s type.

Virtual Function: A virtual function is & member function in a base class that can be
overndden by derived classes, allowing dynamic binding.

6.11 Review Questions

I

Define data abstraction and explain its significance in programming. How does it
contribute to code organization and simplification? Provide an example to illustrate your
explanation.

. Deseribe the principles of encapsulation and information hiding in object-oriented

programming. Provide a scenario where encapsulation enhances code reliability and
explain how it achieves this.

What 15 flunction overloading, and why is it used in C4++7

Can you have two functions with the same name and the same parameter list in C++7
What is operator overloading, and why is it important in C++7

Name some operators that can be overloaded for user-defined types.

What is function overloading, and why is it used in C++7

Name some operators that can be overloaded for user-defined types.

How are function templates instantiated with specific data types?

10. Define class templates and their purpose in C++, f

199
Far nda G it

11, Explain how class templates are instantiated with specific data types.

6.12 References

1. Shiffman, D. (2016). Leaming Processing: A Beginner's Guide to Programming
Images, Animation, and Interaction (2nd ed.). Morgan Kaufmann

2, "C++ Primer” (5th Edition) by Stanley B. Lippman, Josée Lajoie, and Barbara E.
Moa.

3, Stroustrup, Bjame. "The C4+ Programming Language.” 4th ed., Addison-Wesley,
2013.

4. Lippman, Stanley B., Lajoie, Josée, and Moo, Barbara E. "C++ Primer." 5th ed,
Addison-Wesley, 2012

5. Meyers, Scott. "Effective Modem C++: 42 Specific Ways to Improve Your Use of
C++11 and C++14." 1st ed., O'Reilly Media, 2014,

6. Stroustrup, Bjarne. "Programming: Principles and Practice Using C++." 2nd ed,
Addison-Wesley, 2014,

7. Williams, Anthony. "C++ Concurrency in Action.” 2nd ed., Manning Publications,
201%.

200

C++ LAB
Lab Manual

Practical 1: Create a user defined function (any) and use it inside the program

Exercise 1: Write a C++ program that calculates the factorial of a given number using a user-
defined function.

Exercise 2: Write a C++ program that calculates the area and perimeter of a rectangle using
user-defined functions.

Practical 2; Implement “call by value"” & “call by reference “function call techniques by using
any user defined functions.

Exercise 3. Write a C++ program that swaps the values of two integers using the "call by value”
mechanism.

Exercise 4: Wnie a C++ program that swaps the values of two integers using the "call by
reference” mechanism.

Practical 3: Implement the working of classes and objects by using any real world object,
Exercise 5: Implement a Car ¢lass in C++ to represent a real-world car object.
Exercise 6: Create a C++ class named "Rectangle” o represent a rectangle object.

Practical 4: Create any user defined class using the concept of static data and member
functions.

Exercise 7: Create a user-defined class called "Employee™ that represents an employee in a
company.

Exercise 8: Create a user-defined class called "MathUtils" that contains static member functions
lor performing mathematical operations,

Practical 5: Create a Class or program implementing the concept of passing and returning
ohject to/from member functions.

Exercise 9: Passing and Retuming Objects in Member Functions.

Practical 6: To implement polymorphism through function overloading {Area of differem
shapes).

Exercise 10: Write a C++ program to implement poly hism through function overloading
for calculating the ares of different shapes. |

W e dends =t

Practical 7: Create a user defined type Complex and do all the Complex number arithmetic and
also make use of operator overloading.

Exercise 11; Write a C++ program to implement a user-defined type Complex.
Practical 8: Implement single level inheritance by using Student and Marks class.

Exercise 12: Write a C++ program to implement single-level inheritance by using the Student
and Marks classes.

Practical 9: Implement multilevel inheritance by using the Stack class.

Exercise 13: Create a multilevel inheritance hierarchy using the Stack class as the base class.
The derived classes should be named Numeric Stack and String Stack,

Practical 10: Implement the concept of Abstract classes and virual functions by using Shape,
Rectangle and Triangle class.

Exercise 14 In this exercise, you will implement the concept of abstract classes and virtual
functions by creating the Shape, Rectangle, and Triangle classes. The Shape class will be an
abstract base class, while the Rectangle and Triangle classes will inherit from it.

202

Practical 1: Create a user defined function (any) and use 1t inside the program

A user-defined function in C++ is a function that is created and defined by the user to perform a
specific task, It allows the programmer 1o bresk down a complex problem into smaller,
manageable parts, User-defined functions enhance code reusability, readability, and modulanty.
The syntax for defining a user-defined function in C4++ is as follows:
refurn_ivpe fumction_name(parameters) |

i Function body

Stetements and calcrlaiions

A Retwrn statement (i applicable)
/
Following is a breakdown of each component:
return_type: This specifies the type of value that the function will retumn after executing its task.
It can be any valid C++ data type or void if the function does not return any value.
function_name: This is the name given to the function. It should be unique and meaningful,
describing the task the function performs.
parameters: These are optional and represent the mput values that the function may reguire to
perform its task. Parameters are enclosed in parentheses and separated by commas. Each
parameter consists of a type followed by its name, which will be used within the function body
to refer to the corresponding input values.
function_body: This is the block of code that defines the task performed by the function. It
consists of statements, calculations, control structures, and other function calls.
return statement: If the function has a return type other than void, it must include a retum
statement that specifies the value 10 be retumed. The retum statement also terminates the
function execution and transfers control back to the calling code,
To use a user-defined function, you need fo call it from within your program. The funciion call
includes the function name followed by parentheses, which may contain arguments (actual
values) that will be passed to the function's parameters.
Exercise 1: Write a C++ program that calculates the factorial of a given number using a
user-defined function.

The factorial of a number 'n' is defined as the product of all positive integers less than or equal
to "', The program should prompt the user to enter a pusi?('!: integer and display the factorial of
that number,

#tinclude <iostream™>
using namespace std;

Hmizis

ff Function to calculate the factorial of a number
mt factorial(int nj |
int fact=1;
for (int i = 1; 1 <= n; i++) {
fact *=1;
|
refurt fact;
i
int main(} {
inil nm;
cout << "Enter a positive integer: 7;
cin >> num,;

f{ Check if the entered number is positive

if (num < 0) [
coul << "Error: Invalid input. Please enter a positive integer." << endl;
return 0;

i
f{ Call the factorial function and display the result

int result = factorial{num);
cout << "The factonial of " << pum << " 15: " << resull << endl;
return 0;

In this lab exercise, the program prompts the user to enter a positive integer. The program then
checks if the entered number is positive. If it is, it calls the factorial function, which calculates
the factorial of the given number using a loop. The calculated factorial is then displayed to the
user. If the entered number is not positive, an error message is displayed.

Exercise 2:Write a C++ program that calculates the area and perimeter of a rectangle
using user-defined functions.

The program should prompt the user to enter the length and width of the rectangle, and then
display the calculated area and perimeter.

#include <iostream=
using namespace std;

// Function to calculate the area of a rectangle

double calculateArea(double length, double width) §
return length * width;

|

{/ Funetion to calculate the perimeter of a rectangle
double calculatePerimeter{double length, double width) |

return 2 * (length + width); Fof
204

int maind} |
double length, width;
cout << "Enter the length of the rectangle: ";
cin >> length;
cout << "Enter the width of the rectangle: ™;
cin >> width;

i Check if the entered values are valid

if (length <= 0 || width <=0} {
cout << "Error: Invalid input. Length and width should be positive values.” << endl;
refurm 0;

i

// Call the functions to calculate the area and perimeter
double area = calculate Area(length, width);
double perimeter = calculatePerimeter{length, width);

cout << "Area of the reciangle: " << arca << endl;
cout << "Perimeter of the rectangle: " << perimeter << endl;

return 0;
:
In this lab exercise, the program prompts the user to enter the length and width of a rectangle.

The program then checks if the entered values are valid (i.e., positive). If either of the values is
not positive, an emor message is displayed. Otherwise, the program calls the calculateArea and
calculatePenimeter functions to compute the area and perimeter of the rectangle, respectively.
The calculated values are then displayed o the user,

Practical 2 : Implement “call by value™ & “call by reference * function eall technigues by
using any user defined functions.

"Call by value" and "call by reference” are two different mechanisms used to pass arguments to
functions in programming languages like C++. Let's explore each mechanism in more detail:

Call by Value:

In the “call by value" mechanism, the function receives a copy of the argument's value. Any
modifications made to the parameter within the function do not affect the original argument in
the calling code.

example w illustrate "call by value™

#ginclude <wstreams
using namespace std;

void increment{int num) |
A+
cout << "Inside function - Value of num: * << num << end|;

int main() |
int num = 5;
cout << "Before function call - Value of num: ® << num << endl;
increment{mum});
cout << "After function call - Value of num: ™ << num << endl;

returm

i
In this example, the function increment takes an integer argument num by value, Inside the

function, the num parameter is incremented. However, the increment operation only modifies
the local copy of num within the function, and the original num variable in the main function
remains unchanged. Therefore, the output of the program will be:

Before function call - Value of num: 5
Inside function - Valuee of num: 6

After function call - Value of num: 3

Call by Reference:

In the "call by reference” mechanism, the function receives a reference to the argument. Any
modifications made to the parameter within the function directly affect the original argument in

the calling code.

example to illustrate "call by reference™:

#inchude <iostream=
using namespace sid;

void increment(int& num) |
Nk
cout << "Inside function - Value of num: * << num << endl;

i

int main() |
int o = 5;
cout << "Before function call - Value of num: " << num << endl;
increment{numy);
cout << "After function call - Value of num: " << num << endl;

206 For V

returmn O
|

In this example, the function increment takes an integer argument num by reference using the &
symbol. Any changes made to num within the function directly modify the original num
variable in the main function.

Exercise 3:Write a C++ program that swaps the values of two integers using the "call by
villue"” mechanism.

The program should prompt the user to enter two integers, call a function to swap the values,
and then display the updated values.
Solution (Call by Value):

#include <iostream:
using namespace std;

void swapValues(int a, int b {
int temp = a;
a=h;
b = temp;

|

int main{) {
int num]1, num2;
cout << "Enter two integers: ";
Cif = num | == numl;

cout << "Before swapping - numl: " << puml << ", num2; " << num2 << endl;

swapValuesinum1, num2);
coutl << "Afier swapping - numl: " << numl << ", num2: " << npum2 << endl;

return 0

I
Exercise 4:Write a C++ program that swaps the values of two integers using the “call by

reference” mechanism.

The program should prompt the user 1o enter two integers, call a function to swap the values
using call by reference, and then display the updated values.

Solution {Call by Reference):

#include <iostream:=

using namespace std;
vioid swapValues{int&: a, int& b) |

int temp = a;
a=h;

207 Regestal

b = temp;
i

int main() {
int auml, numi;
coul << "Enter two infegers: ",
cin >> num| >> num2;

cout << "Before swapping - numl: " << numl << ", num2; " << num2 << endl;
swapValues(num]1, num2};

cout << "After swapping - numl: " << numl << ", num2: " << num2 << endl;

returm (0}

Practicald: Implement the working of classes and objects by using any real world object.
Exercise S:lmplement a Car class in C++ to represent a real-world car object.

The Car class should have the following member variables:
* brand (string); to store the brand of the car.
« model (string): to store the model of the car.
» vyear (integer): 1o store the manulscturing year of the car.
The Car class should also have the following member functions:
A constructor that takes parameters o initialize the member variables.

displayDetails(); 8 member function that displays the details of the car, including the
brand, model, and manufacturing vear.

Write a C++ program that creates an object of the Car class with the following details:
¢ Brand: "Toyola"
s Model: "Camry"
¢ Year: 202]
Display the details of the car using the displayDetails{) member function.

Solution; |
#include <iostream=
using namespace std;

elass Car |

private:
string hrand;
string model;
int year;

public:
fOConstructon
Car{string carBrand, string carModel, int carYear) |
brand = carBrand;
maodel = carModel;
year = car'Y ear;
'

{f Member function to display car details
void displayDetails{) |
coul <= "Car Details;™ << endl;
cout << “Brand: " << brand << endl;
cout << "Model: " << model << end;
ool << "Year ¥ o year << endl:

i
b

int main{) |
/f Creating an object of the Car class

Car myCar({"Toyota®, "Camry", 2021);

/f Calling the displayDetails() member function
myCar.displayDetails(),

return 0
'

Exercise 6:Create a C++ class named "Rectangle” to represent a rectangle object,

The Rectangle class should have the following member variables:
length {float): to store the length of the rectangle.

width (float): to store the width of the rectangle.

The Rectangle class should also have the following member functions:

width of the rectangle.
the area of the rectangle.

A constructor that takes parameters (o initialize the length

calculateArea(): a member function that calculates and re

209

calculatePerimeter(): 8 member function that calculates and returns the perimeter of the
réctangle.

displayDetails(): @ member function that displays the details of the rectangle, including its
length, width, area, and perimeter.

Write a C++ program thai creates an object of the Rectangle class with the following details:

Length: 5.3
Width: 2.7
Display the details of the rectangle using the displayDetails() member function

#include <iostream>
using namespace std;

class Rectangle |
privaie:
Mloat length;
float width;

public:
#f Constructor
Rectanglel float rectLength, foat rectWidth) {
length = rectLength;
width = rectWidth;
|

/f Member function to calculate the area of the rectangle
float calculateArcal) |

return length * width;
!

/! Member function to calculate the perimeter of the rectangle
float calculatePenmeter() |

return 2 * (length + width);
i

/ Member function to display reciangle details
void displayDetails() {
cout << "Rectangle Details:" << endl;
coul << "Length: " << length << endl;
cout =< "Width: " << width << endl;
cout << "Area: " << calculateArea() << endl;
cout <= "Perimeter: ® << calculatePerimeter() << endl;

Fol
210

s

int main() {
ff Creating an object of the Rectangle class
Rectangle myRectangle(5.3, 2.7);

/l Calling the displayDetails{) member function
myRectangle displavDetails();

returm ;

Practical 4: Create any user defined class using the concept of static data and member functions.

Exercise 7: Create a user-defined class called "Emplovee” that represents an employee in &
cOmPpany.
The Employee class should have the following attributes:

static data member "companyNamec" that stores the name of the company (same for all
employees)

instance data member "name” that stores the name of the emplovee

instance data member "salary™ that stores the salary of the emplovee

The Employee class should also have the following member functions:

A static member function called "changeCompanyName® that allows changing the company
NAMe.

A member function called "displayDetails” that displays the name, salary, and company name
of an employee.

Write the necessary code to implement the Employee class and demonstrate its usage by
creating two emplovee objects and performing the following tasks:

Set the company name for both employees.
Set the name and salary for each employee.
Display the details of both employees.

#include <iostream=>
#include <string>

class Employee |
static std::string companyMName;
std:-string name;
float salary;

public:
static void changeCompanyName(const std:string& newName) |
companyName = newName;

Employvee{const std::stringd: empName, float empSalary) |
name = empName;

salary = empSalary;

void displayDetails() {
std::cout << "Name: " << name << std: :endl;
std:scout << "Salary: " << salary << sid::endl;
std::cout << "Company Name: " << companyName << sid::endl;

std::string Employee::companyMame = ™",

int main{) |
Employee: :changeCompanyName(" ABC Corp”);

Employee employeel ("John Doe®, 5000);
Employee employee2(™Jane Smith", 6000},

emploveel displayDetails{);
std::cout << std:zendl;
emplovee2 displayDetails();

Fof
212

return {F;

Exercise 8: Create a user-defined class called "MathUtils™ that contains static member
functions for performing mathematical operations.

The MathLlils class should have the following static member functions:

"square” that takes a number as input and retumns its square.

"cube" that takes a number as input and returns its cube,

"factorial” that takes a positive integer as input and returns its factorial.

Write the necessary code to implement the MathUtils class and demonstrate its usage by

performing the following tasks:

Calculate the square of a given number.
Caloulate the cube of a given number.

Caleculate the factonial of a given positive integer.
#include <iostream=

class MathUtils |
public;
static int square{int number) {
return number * number;

static int cube(int number) |
return number * number * number;

static int factorial{int number) |
if (mumber == 0}
return 1;
else
return number * factorial{number - 1);

2 Rogau.

il maind) |
inl number = 5;
int squareResult = MathLils::square(number};

std::cout << "Square of " << pumber << " is " << squareResult << sid:endl;

number = 3;
int cubeResult = MathLUtils: :cube{number);
std::cout =< "Cube of " << pumber << " is " << cubeResult << std::endl;

number = 4;
int factorial Result = MathUtils: : factonial{number);
std:zeout << "Factorial of " << number << ™ is " << factorial Result << std:;;endl;

return {0;

Practical 5: Create a Class or program implementing the concept of passing and returning
object to/from member functions.

Exercise 9: Passing and Returning Objects in Member Functions.

Ohjective: To create a class or program that demonstrates the concept of passing and returming
objects o/from member functions.

Instructions:

Create a class called "Rectangle” with the following private attnibutes:

length (integer)

width (integer)

Implement the following public member functions in the Rect

214

setDimenswons(int I, int w): Sets the length and width of the reciangle based on the given
parameters.

calculate Area(); Calculates and retumns the area of the reciangle.
calculatePerimeter(): Calculates and returns the perimeter of the rectangle.

comparcRectangles(Rectangle r): Compares the area of the cument rectangle with another
rectangle (r) passed as a parameter. It should return 1 if the current rectangle has a greater area,
-1 if the passed rectangle has a greater area, and 0 if both rectangles have the same area.

In the main function, create two Rectangle objects and perform the following tasks:

Set the dimensions of the first rectangle to length=5 and width=7 using the setDimensions()
function.

Set the dimensions of the second rectangle 1o length=4 and width=9 using the setDimensions()
function.

Calculate and display the area and perimeter of both rectangles using the appropriate member

functions,

Compare the areas of the two rectangles using the compareRectangles() function and display the
result.

#include <iostream®
using namespace sid;

class Rectangle |
private;

int length;

int width;

public:
void setDimensions{int 1, int w) |
length = |;
width = w;

int calculateArca() |
retumn length * widih;
H

int calculatePerimeter() |
return 2 * (length + width);

int compareRectangles(Rectangle 1) |
int areal = caleulate Areal);
int area? = r.caleulateAreal’);

if (areal = area) {
return 1;

} else if (areal < areal) {
refum =1;

| else {
refurn 0;

}
}
H

int main() {
Rectangle rect], rect2;

rect].setDimensions(5, 7);
rect2 setDimensions(4, 9);

cout <= "Rectangle 1:" << endl;
cout <= "Arpea: " << réct].calculateAreal) << endl;
cout << "Perimeter: " << rect] calculatePerimeten) << endl;

cout << "Rectangle 2:" << endl;
cout << "Area: " << rect2 calculateAren() << endl;
cout << "Perimeter; " << rect2.calculatePenimeten() << endl;

int comparisonResult = rect] compareRectangles(rect2);

if (comparisonResult == 1) |

cout << "Rectangle | has a greater area than Rectangle 2.7 << endl;
¥ else if (comparisonResult == -1) |

cout << "Rectangle 2 has a greater area than Rectangle 1.7 << engl;
Y else |

cout << "Both rectangles have the same area." << endl;
H

return 0
i

Practical 6: To implement polymorphism through function overloading (Area of different
shapes). o

Exercise 10: Write a C++ program to implement polymorphism through function
216

overloading for caleulating the area of differcnt shapes.

The program should include the following shapes: rectangle, triangle, and circle. The program
should provide a menu-driven interface to the user, allowing them to choose a shape and enter
the required dimensions for calculating the area. Implement the area calculation wsing function
overipading.

Solution:
#include <iostream>
using namespace sid;

// Function to calculate the area of a rectangle
float area(float length, float breadth) |

return length * breadth;
i

ff Function to calculate the area of a triangle
Moat areafloat base, float height) |

return 0.5 * base * height;
i

/! Function to calculate the area of a circle
float area{ float radius) |

return 3.14 * radius * radius;
]

int main() |
int choice;

do {
cout << "Menu:'n";
cout << "], Calculaie the area of a rectangle'n";
cout <= "2. Calculate the area of a triangle'n™;
eout << "3, Calculate the area of a circle'n;
cout << "4, Exit'n";
cout << "Enter your choice: ™;
¢in >> choice;

switch (choice) |
case 1:
float length, breadih;
cout << "Enter length and breadth: *;
cin == length > breadth;
cout << "Area of the rectangle: " << area(length, breadih) << endl;

217

L]

break;

case 2.
float base, height;
cout << "Enter base and height: =;
cin >> bhase >> height;
cout << "Area of the triangle: " << area{base, height) << endl;
break;

case 3
float radius;
cout << "Enter radius; ;
cin >> radius;
cout << "Area of the circle: " =< area(radius) << endl:
break;

case 4
cout << "Exiting the program.'n”;
break;

default;
cout << "[nvalid choice. Please try again.'n";
break:
)

cout << endl;
} while (choice = 4);

return

i
Practical 7:Create a user defined type Complex and do all the Complex number

arithmetic and also make use of operator overloading.

Exercise 11: Write a C++ program to implement a user-defined type Complex.

The Complex type should have the following functionalities:
Accept and display the real and imaginary parts of a complex number.

Perform addition, subtraction, multiplication, amd division of two complex numbers using
operator overloading.

Display the result of each arithmetic operation.

218 For¥ H S

H,l:-'gl"i'l"i Al

#include<iostream>

using namespace std;

class Complex |

private:
double real;
double imaginary;
public:
Complexidouble r =0, double i = 0) |
real =r;
imaginary = i;
i
void display() |

cout << real << " + " << imaginary << "" << ¢ndl;

Complex operator+{Complex const &obj) |
Complex result;
resultreal = real + obyj,real;
result.imaginary = imaginary + obj.imaginary;

return result;

Complex operator-{Complex const &obj) |
Complex result;
result.real = real - obj.real;
result.imagmary = imaginary - obj.imaginary;
return result;

219

Complex operstor®(Complex const &obj) |
Complex result;
result.real = (real * obj.real) - (imaginary * obj.imaginary);
result.imaginary = (real * obj.imaginary) + (imaginary * obj.real).

return result;

Complex operator/{Complex const &obj) |
Complex result;
double denominator = {obj.real * obj.real) + (obj imaginary * obj imaginary);
result.real = ((real * obj.real) + (imaginary * obj.imaginary)) / denominator;
result.imaginary = ((imaginary * obj.real) - (real * obj.imaginary)) / denominator;

return result;

int main() {
Complex numl{2.5, 3.7};
Complex num2(1.6, 2.8);

Complex sum = numi + num2;
Complex difference = numl - num2;
Complex product = num1 * num?2;
Complex quotient = num| / num2;

cout << "Complex Numbers: " << endl;
cout << "Number 1: *;
numl display(};

coul == "Number 2: 7,

num2 display(}:

220

cout << "Arithmetic Operations: " << endl;
cout << "Sum: ";

sum.display();

cout << "Difference: ";
difference.display();

coul << "Product: ";

producLdisplay();

cout << "Quotient: *;

quotient display();

retum (;

Practical 8: Implement single level inheritance by using Student and Marks class.

Exercise 1I: Write a C++ program to implement single-level inheritance by using the

Student and Marks classes.
The Student class should have data members for the student's name and roll number, along with

member functions to input and display the student’s details. The Marks class should inherit from
the Student class and have data members for the marks obtained in three subjects, along with
member functions to input and display the marks. Implement appropriate constructors and
destructor in both classes.

Solution:

#include<iostream=

#include<string>

using namespace std;

class Student |
string name;
int rollNumber;

public:
Student() |

['Lﬂm-l: = r|||:
rolINumber = 0

void inputi) |
cout << "Enter name: "
¢in > name;
coul << "Enter roll number; ;

cin == mollNumber;

viond display() |
coul << "Name: " << name << endl;

cout == "Roll Mumber: " << rollNumber << endl;

clazs Marks : public Stedent |
int subject];
int subject2;
int subject3;

public:

Marks() |
subject] = ();
subject2 = ();
subjectd =0

void inputMarks() |
cout << "Enter marks for subject 1: ™}
cin >> subject|;
cout << "Enter marks for subject 2: ";

cin >> subject2;

222

':1'. _'||"-"|-'I

RegEl™

cout << "Enter marks for subject 3: %;

¢in == subject3;

void displayMarks() {
coutl << "Marks for subject 1: " << subject] << endl;
cout << "Marks for subject 2: ™ << subject2 << end;

cout << "Marks for subject 3: " << subject? << end];
i

int main{) {
Marks studentMarks;

studentMarks. input(); { Input student details
studentMarks inputMarks(); /' Input marks

cout << end];

studentMarks display(); // Display student details
studentMarks displayMarks(); // Display marks
return 0;

Practical 9: Implement multilevel inheritance by using the Stack class.

Exercise 13: Create a multilevel inheritance hierarchy using the Stack class as the base
class. The derived classes should be named NumericStack and StringStack.
The Stack class should have the following functionalities:

A congtructor that initializes an empty stack.

A method named push{) that accepts an item and adds it to the 1op of the stack.

A method named pop() that removes and returns the wop item from the stack.

A method named is_empty() that checks if the stack is empty.

A method named display() that prints the contents of the stack.

The NumericStack class should inherit from the Stack class uﬁ additionally have:

R I R

A method named get_average() that calculates and retums the average of all the numeric
elements in the stack.

The StringStack class should inherit from the Stack class and additionally have:

A method named count_vowels() that counts and returns the number of vowels in all the string
elements in the stack.

Write a program that demonstrates the use of these classes. Your program should perform the
following actions:

Create a NumericStack object,

Push § numeric values {e.g., 10, 20, 30, 40, 50) into the NumericStack.

Display the contents of the NumericStack.

Calculate and display the average of the numeric elements in the NumericStack.
Create a StringStack object.

Push 3 string values (e.g., "hello®, "world”, "openai") into the StringStack.
Display the contents of the StringStack.

Count and display the number of vowels in the siring elements in the StingStack

#include <iostream=
#include <string>
using namespace std;
class Stack |
protected:

static const int MAX_ SIZE = 100;

int top;

int ar{MAX_SIZE];
public:

Stack() {

top =-1;

void push(int item) |
if (top = MAX _SIZE-1) {

224

cout << "Stack Overflow!™ << endl;
refum;
i
arr{-++op] = item;
!
int pop() {
if {top == -1) {
cout << "Stack Underflow!™ << endl;
retum-1;
i
retumn arr{top--J;

bool is_empty() |
return top == =1;
i
void display() |
cout =< "Stack Contents: ";
for (int i = wop; i == 0; i--) |
cout << arrfi] <<" "
i
cout << endl;
i
'
class NumericStack : public Stack {
public:
double get_average() {
if (top == -1) |
coul << "Stack is empty!" << end;
return 0.0,

225

double sum = 0.0,

for (int 1= 0; 1 <= top; 1++) {
sum += anfil;

i

return sum / (top + 1)

¢lazs StringStack ; public Stack |
public:
int count_vowels{) |
if (top = -1) {
cout <= "Stack is empty!” << endl:
return 0
i
intl vowelCount = 0;
string str;
for (inti=0; i <=top; i++) |
str = to_string(arr[i]);
for (char ch : str) |
if {tolower(ch) = "' || wlower(ch) == '¢' || tolower{ch) == 1" ||
tolower{ch) = "o’ || tolower{ch) = ') |
vowelCount++;

int main() { et

226

NumericStack numStack;
numStack.push{10};
numStack.push{20};
numStack.pushi 30];
numStack.push(40);
numStack. push(50;

cout << "Numenc Stack:" << endl;
numStack display();
cout << "Average: " << numStack.get_average() << endl;

StringStack stritack;
strtack.push(104);
strStack.push(101);
strStack.push(108);
sirStack.push(108);
strStack. push{111);
strStack.push(119);
sirStack pushi111};
strStack.push(1 14);
strStack. push(1 08);
strStack.push(100);

cout << "String Stack:" << end|;
strStack.displav();

cout << "Vowel Count: " << strStack count_vowpls() << endl;

Y i
Fractical 10: Implement the concept of Abstract classes and virtual functions by using

127

Shape, Rectangle and Triangle class.

Exercise 14: In this exercise, you will implement the concept of abstract classes and virtual
functions by creating the Shape, Rectangle, and Triangle classes. The Shape class will be
an absiract base class, while the Rectangle and Triangle classes will inherit from it.

Your task is to complete the implementation of the classes and ensure that the appropriste
functions are marked as abstract using pure virtual functions. You will also override the virtual
functions in the derived classes to caloulate the area of the shapes.

To implement the classes and their functions. Follow the steps below:

Creale an abstract base class called Shape.

Inside the Shape class, declare a pure virtual function called getArea(). This function will be
used to calculate the area of different shapes and should retum a double.

Create a derived class called Rectangle that inherits from Shape.

Inside the Rectangle class, declare private member variables for the length and width of the
rectangle.

Implement a constructor for the Rectangle class that initializes the length and width.

Override the getAreal) function in the Rectangle class to caleulate and retumn the arca of the
rectangle using the formula length * width,

Create another derived class called Triangle that also inherits from Shape.

Inside the Triangle class, declare private member variables for the base and height of the
triamgle.

Implement a constructor for the Triangle class thai initializes the base and height.

. Override the getAreal) function in the Trangle class 1o calculate and return the area of the

triangle using the formula 0.5 * base * height,

#include <ipstream=

class Shape |
public:

virtual double getArea() const = 0; // Pure virual function
h

class Rectangle : public Shape {
private:

double length;

double width;

public:
Rectangle{double length, double width) - length{length), width{width) {}

double getArea() const overnide |
return length * width:
i
'

class Triangle : public Shape {
private:

double base;

double height;

228

public:
Triangle{double base, double height) : base{base), height(height) {)

double getArcal) const override |
retumn 0.5 * base * height;
|
b

int main() |
Shape® shapel = new Rectangle(5.0, 3.0); // Create a Reclangle object
double areal = shapel ->getArea(); // Call the getArea() function
std::cout << "Area of Reclangle: ® << areal << std::endl;

Shape® shape? = new Triangle(4.0, 6.0); // Create a Triangle ohject

double area? = shapel->getAreal(); // Call the getArea() function
std::cout << "Area of Triangle: " << area << std::endl;

delete shapel ;
delete shape?;

return (;

F¥y]

